首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用卷积神经网络构建图像分类模型检测肺炎

在本篇文章中,我将概述如何使用卷积神经网络构建可靠的图像分类模型,以便从胸部x光图像中检测肺炎的存在。 ? 肺炎是一种常见的感染,它使肺部的气囊发炎,引起呼吸困难和发烧等症状。...数据 Kermany和他在加州大学圣迭戈分校的同事们在使用深度学习的胸部x光和光学相干断层扫描的基础上,主动识别疾病。我们使用他们研究中提供的胸部x光图像作为我们的数据集。...基线模型 作为我们的基线模型,我们将构建一个简单的卷积神经网络,将图像调整为方形,并将所有像素值归一化到0到1的范围后,再将其接收。完整的步骤如下所示。...因此,现在我们的生成器将通过在指定的范围内对原始图像集应用不同的旋转、亮度、剪切和缩放来为每一批图像创建新图像。 模型的复杂性 我们还增加了三组卷积层和池层,从而增加了模型的复杂性。...我们的模型以97.8%的准确率预测了测试集中的X_ray图像的类别。成功发现97.9%的肺炎病例。 结论 我们的模型显示,根据我们的数据集,使用卷积神经网络,它能够正确地检测到接近98%的肺炎病例。

1.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    你用 iPhone 打王者农药,有人却用它来训练神经网络...

    在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。...这篇文章主要着眼于如何在 iOS 设备上直接为 MNIST 数据集构建和训练一个 LeNet CNN 模型。...接下来是构建 CNN 网络,卷积层、激活与池化层定义如下: ? 再使用一组与前面相同的卷积、激活与池化操作,之后输入 Flatten 层,再经过两个全连接层后使用 Softmax 输出结果。 ?...得到的 CNN 模型 刚刚构建的 Core ML 模型有两个卷积和最大池化嵌套层,在将数据全部压平之后,连接一个隐含层,最后是一个全连接层,经过 Softmax 激活后输出结果。 ?...基准 TensorFlow 2.0 模型 为了对结果进行基准测试,尤其是运行时间方面的训练效果,作者还使用 TensorFlow 2.0 重新创建了同一 CNN 模型的精确副本。

    2.7K20

    深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD

    基于 Inception V2 框架的 SSD 模型。 使用 ResNet-101 框架的基于 Region 的全卷积网络(R-FCN)模型。...在每个 region proposal 上都运行一个卷积神经网络(CNN)。 将每个 CNN 的输出都输入进:a)一个支持向量机(SVM),以对上述区域进行分类。...RPN 工作原理: 在最后卷积得到的特征图上,使用一个 3x3 的窗口在特征图上滑动,然后将其映射到一个更低的维度上(如 256 维), 在每个滑动窗口的位置上,RPN 都可以基于 k 个固定比例的...R-FCN 还记得 Fast R-CNN 是如何通过在所有 region proposal 上共享同一个 CNN,来改善检测速度的吗?...本质上来讲,这些分数图都是卷积特征图,它们被训练来识别每个目标的特定部位。 以下是 R-FCN 的工作方式: 在输入图像上运行一个 CNN(本例中使用的是 ResNet)。

    1.5K70

    Nature | 光学CNN层替换传统CNN层,超省电

    引言 深度神经网络已在各个领域取得了广泛应用,从计算机视觉到自然语言处理以及游戏等。卷积神经网络(CNN)利用各种图像特征的空间不变性,在图像分类、图像分割甚至图像生成等计算机问题中非常受欢迎。...ASP 视觉系统曾探究过一种混合光电 CNN 的概念,使用 angle sensitive pixel(APS)来近似经典 CNN 的第一个卷积层,但是卷积核集是固定的。...本文提出一种光学卷积(opt-conv)层的设计,该层具有可优化的相位掩模,该掩模利用由线性和空间不变的成像系统执行的固有卷积。首先研究者在两个模拟模型的图像分类中测试了他们的方法。...相比之下,增加一个标准卷积层也能提升相似的准确率,但会使计算成本数量级增加。综上,研究者证明了包含初始光学计算层的混合光电卷积神经网络如何在性能上得到提升,同时将系统的延迟或功耗降到最低。...研究者设计了一种基于优化衍射光学元件的光学卷积层,并在两个模拟实验中进行了测试:一个学习到的光学相关器和一个双层光电 CNN。

    1.5K20

    Spring AI中的卷积神经网络(CNN):深度解析与Java实现

    其中,卷积神经网络(CNN)作为深度学习的重要模型,以其独特的结构和卓越的性能,在计算机视觉、自然语言处理、语音识别等多个领域取得了显著成就。...卷积神经网络的诞生与发展卷积神经网络(CNN)是一种专门用于处理具有网格结构数据(如图像)的神经网络。...业务场景计算机视觉CNN在计算机视觉领域的应用最为广泛,包括图像分类、目标检测、图像分割等多个方面。图像分类:CNN能够识别图像中的物体类别,如猫、狗、汽车等。...通过卷积核(也称为滤波器)在输入数据上滑动,计算局部区域的加权和,生成特征图。权重共享机制使得同一个卷积核在输入数据的所有位置上共享权重,大大减少了模型的参数量。...(CNN)的背景历史、业务场景、底层原理以及如何在Java中实现CNN模型。

    17321

    CNN vs.RNN vs.ANN——浅析深度学习中的三种神经网络

    在深度学习中,不同类型的神经网络,如卷积神经网络(CNN)、循环神经网络(RNN)、人工神经网络(ANN)等,正在改变我们与世界互动的方式。...现在来看看如何使用两种不同的架构来克服MLP的局限性:循环神经网络(RNN)和卷积神经网络(CNN)。 循环神经网络 (RNN) – 什么是RNN以及为什么使用它?...image.png 如您所见,在最后一个时间步计算的梯度在到达初始时间步时消失。 卷积神经网络 (CNN) –什么是CNN 以及为什么使用它? 卷积神经网络(CNN)目前在深度学习领域非常流行。...这些CNN模型正被用于不同的应用和领域,它们在图像和视频处理项目中特别流行。 CNN的构造块是被称为kernels的过滤器。核函数用于通过卷积运算从输入中提取相关特征。...使用过滤器卷积图像会生成特征映射: image.png 虽然卷积神经网络被用来解决与图像数据相关的问题,但它们在顺序输入上也有着令人印象深刻的表现。

    6.5K41

    带你了解什么是卷积神经网络

    CNN在图像处理和视频处理领域有着广泛的应用。在这篇文章中,我将详细介绍卷积神经网络是如何进化的,以及为什么它们在图像领域如此出色。在此基础上,我们将建立一个使用Keras的卷积神经网络。...“卷积神经网络”表示该网络使用的数学运算称为卷积. 卷积实数参数的两个函数的运算。 image.png 这个运算在数学上叫做卷积。...在卷积神经网络术语中,卷积的第一个参数常被称为输入,第二个参数称为内核,其输出称为特征映射。现在我将向你展示如何在CNN中应用这个数学术语“卷积”。...image.png 跨步 在卷积神经网络中跨出是非常重要的。我将在这里讨论如何在两个图像的帮助下实现跨步,以使其清晰。 image.png 使用更大步幅的一个主要原因是减少输出特征映射中的参数。...现在我们准备好设计我们自己的CNN模型。我会详细解释CNN的内容。 卷积神经网络的设计 在这一部分中,我们将设计我们自己的卷积神经网络。

    1.4K00

    图像可搜索加密(三):逼近明文检索

    深度特征阶段:近十年来,随着深度学习特别是卷积神经网络(CNN)的迅猛发展,CBIR技术在2010年代迎来了深度特征阶段。...图像检索通常是一个无监督的过程,同时对效率要求较高,因此通常会使用在大数据集上预训练完成的模型进行检索。...此类方案通常基于成熟的预训练CNN模型(如VGG16)提取出卷积层特征(通常会舍弃最后用于分类的全连接层),然后使用主成分分析(PCA)或其它降维工具压缩卷积特征,并最终使用L1/L2距离等传统比较方法进行实际的距离度量...密文深度特征 如何在图像加密的基础上实现局部特征乃至深度特征的安全提取呢?事实上,这个问题本质上是一个更广泛的问题:如何在加密数据上执行通用计算过程并得到加密结果?...一些研究文献指出,即使是使用相对基础的卷积模型,如VGG13或VGG16,也可以在常见的小型测试集上实现超过95%的检索精度。而与此同时,所需的时间消耗仅为特定加密方案的3至5倍。

    36710

    【数据挖掘】卷积神经网络 ( 视觉原理 | CNN 模仿视觉 | 卷积神经网络简介 | 卷积神经网络组成 | 整体工作流程 | 卷积计算图示 | 卷积计算简介 | 卷积计算示例 | 卷积计算参数 )

    , 创建多层神经网络模型 , 如 卷积神经网络 ; ③ 分层工作机制 : 多层神经网络模型机制 , 在底层识别图像的边缘特征 , 上一层逐渐识别形状 , 最上层对图像像素进行判定分类 ; III ....卷积神经网络简介 ---- 卷积神经网络 简介 : ① CNN 卷积神经网络 处理的数据类型 : CNN 卷积神经网络 , 是特殊的神经网络 , 其通常用于处理网格状的数据 , 如 时间序列 ( 音频数据...) , 或 图片数据 ; ② CNN 适用场景 : CNN 卷积神经网络其本质是一个多层神经网络 , 该模型适合处理 大型图像 相关的 机器学习 问题 ; ③ CNN 成就 : CNN 在 深度神经网络...; 边缘底层特征是 横向 , 垂直 , 斜线 , 等边缘 形状特征 ; ② 图像特征类似 : 图像中的特征 , 不管是相同图像 , 还是不同图像 , 其中的片段的特征是类似的 , 可以使用 同一组分类器...描述 不同的图像 特征 ; 如训练识别一只猫的图像 , 在这张图片上的猫 , 与另外一张图片的猫 , 其片段特征的是类似的 ; ③ 降低数量级 : 100 万像素的图片 , 可以使用 1 万个

    86810

    ·理解NLP的卷积神经网络

    在这篇文章中,我将尝试总结CNN是什么,以及它们如何在NLP中使用。CNN背后的直觉对于计算机视觉用例来说有点容易理解,所以我将从那里开始,然后慢慢向NLP迈进。 什么是卷积?...CNN基本上只是几层卷积,其中非线性激活函数 如ReLU或tanh应用于结果。在传统的前馈神经网络中,我们将每个输入神经元连接到下一层中的每个输出神经元。这也称为完全连接层或仿射层。...这个计算有两个方面值得关注:位置不变性和组合性。假设您想要对图像中是否有大象进行分类。因为你在整个图像上滑动你的过滤器,你真的不关心那里的大象发生。...在[5]中,作者使用另外的无监督“区域嵌入”扩展了模型,该区域嵌入是使用CNN预测文本区域的上下文来学习的。这些论文中的方法似乎适用于长篇文本(如电影评论),但它们在短文本(如推文)上的表现并不清楚。...[17]探讨了将字符级卷积应用于语言建模,在每个时间步使用字符级CNN的输出作为LSTM的输入。相同的模型适用于各种语言。 令人惊奇的是,基本上所有上述论文都是在过去1 - 2年内发表的。

    1.3K30

    【机器学习】深度学习的现实应用——从图像识别到自然语言处理

    比如,卷积神经网络(CNN)能够通过多层卷积和池化操作,从图像中提取出不同层次的特征(如边缘、纹理、形状等)。...相比之下,深度学习模型的复杂度大幅提高,尤其是深层神经网络(DNN)、卷积神经网络(CNN)和循环神经网络(RNN)等模型,拥有成千上万甚至数亿的参数。...1.3.2 卷积神经网络(CNN) 卷积神经网络擅长处理图像数据。...两种经典的图像识别模型是卷积神经网络(CNN)和深度残差网络(ResNet),它们在处理图像任务时表现出色,并被广泛应用于多个领域。...2.2.1 卷积神经网络(CNN) 卷积神经网络(Convolutional Neural Network, CNN) 是一种专门为图像数据设计的神经网络架构,通过卷积操作提取图像的局部特征。

    21310

    “几何深度学习”受爱因斯坦启示:让AI摆脱平面看到更高的维度!

    但是,如果将卷积神经网络用于没有内置平面几何形状的数据集(如3D计算机动画中使用的不规则形状的模型,或者自动驾驶汽车生成的点云来绘制周围环境),这种强大的机器学习架构的效果就要受到影响。...同样,两位摄影师从两个不同的有利位置拍摄同一个对象的照片会产生不同的图像,但是这些图像可以彼此关联。量表的等方差可确保物理学家的现实模型保持一致,无论他们的观测点或测量单位如何变化。...卷积神经网络将许多这些“窗口”滑动到数据上,例如过滤器,每一个都旨在检测数据中的某种模式。如果是猫的照片,经过训练的CNN可能会使用过滤器来检测原始输入像素中的低级特征,例如边缘。...这些特征会传递到网络中的其他层,执行其他卷积,并提取更高层的特征,如眼睛,尾巴或三角形的耳朵。用于识别猫的CNN最终将使用这些分层卷积的结果,为整个图像分配标签(“是猫”或“不是猫”)。...比如可以自动识别出弯成两个不同姿势的3D形状(一个站直的人,和一个抬起一条腿的人)是同一类对象实例,而不是两个完全不同的对象。这一变化让神经网络的学习效率大大提高。

    66840

    《探秘卷积神经网络:权重共享与局部连接的神奇力量》

    在卷积神经网络(CNN)的众多特性中,权重共享和局部连接是两个至关重要的概念,它们不仅是CNN能够高效处理数据的关键,也赋予了模型强大的特征提取能力。...权重共享- 原理:在CNN中,同一卷积核在应用于输入数据的不同位置时使用相同的权重参数。...局部连接- 原理:在卷积神经网络中,局部连接意味着卷积核上的每个神经元仅与输入数据的局部区域连接,而不是与整个输入层的所有神经元相连接。...在处理图像时,这种特性非常重要,因为图像中的物体通常具有局部的结构和特征,如边缘、角点等,通过局部连接可以更好地捕捉这些特征。...理解这两个概念对于深入理解卷积神经网络的工作原理以及设计和优化更高效的神经网络模型具有重要意义。

    3400

    CV的未来是图神经网络?中科院软件所发布全新CV模型ViG,性能超越ViT

    从卷积神经网络到带注意力机制的视觉Transformer,神经网络模型都是把输入图像视为一个网格或是patch序列,但这种方式无法捕捉到变化的或是复杂的物体。...但不同的网络对待输入图像的处理方式也不同,CNN在图像上滑动窗口,引入平移不变性和局部特征。...首先在图卷积的前后应用一个线性层,将节点特征投射到同一域中,增加特征多样性。在图形卷积之后插入一个非线性激活函数以避免层崩溃。...在计算机视觉的网络架构中,常用的Transformer模型通常有一个等向性(Isotropic)的结构(如ViT),而CNN更倾向于使用金字塔结构(如ResNet)。...可以观察到,ViG模型可以选择与内容相关的节点作为第一阶邻居。在浅层,邻居节点往往是根据低层次和局部特征来选择的,如颜色和纹理。在深层,中心节点的邻居更具语义性,属于同一类别。

    61820

    从像素到洞见:图像分类技术的全方位解读

    深度学习的革命 深度学习的出现,特别是卷积神经网络(CNN)的应用,彻底改变了图像分类的领域。2012年,AlexNet在ImageNet挑战中取得突破性成绩,标志着深度学习时代的来临。...卷积神经网络(CNN) CNN是图像分类的关键。它通过卷积层、激活函数、池化层和全连接层的结合,有效地提取图像中的层次特征。...模型 定义一个简单的卷积神经网络。...通过这个过程,我们可以理解如何使用PyTorch构建和训练一个图像分类模型,并对其性能进行测试。 四:案例实战 在本部分,我们将通过两个实战案例来展示图像分类的应用。...首先,我们将使用MNIST数据集来构建一个基本的手写数字识别模型。其次,我们将使用更复杂的CIFAR-10数据集来构建一个能够识别不同物体(如汽车、鸟等)的模型。

    41010

    卷积神经网络(CNN)基础介绍

    CNN是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元的连接是非全连接的,另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。...CNN是一种带有卷积结构的深度神经网络,通常至少有两个非线性可训练的卷积层,两个非线性的固定卷积层(又叫Pooling Laye)和一个全连接层,一共至少5个隐含层。...CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积核代表一段弧,那么把这个卷积核在整个图片上滚一下,...通常输入层大小一般为2的整数倍,如32,64,96,224,384等。通常卷积层使用较小的filter,如3*3,最大也就5*5。...四、卷积神经网络LeNet-5结构分析 CNN是一种带有卷积结构的深度神经网络,通常至少有两个非线性可训练的卷积层,两个非线性的固定卷积层(又叫Pooling Layer或降采样层)和一个全连接层

    1.8K20

    关于神经网络技术演化史

    例如,元模型、LSTM模型和现代图像分析使用了许多跨层链接方法来更容易地传播梯度。 接下来,我们将进一步深入学习,特别是卷积神经网络(CNN)和递归神经网络(RNN)。...在我们开始使用深度学习之前,模型都是在之前定义的统计数据库上训练的。2010年,微软使用了一个深度学习神经网络进行语音识别。从下图可以看出,两个误差指标都下降了2/3,有了明显的改善。...卷积神经网络 Convolutional Neural Networks 卷积神经网络有两个核心概念。一个是卷积,另一个是pooling。...如果我们使用CNN对图像进行分类,那么由于卷积的概念,隐藏层上的每个节点只需要连接和扫描图像的一个位置的特征。...下面的可视化汽车示例是CNN在图像分类领域的应用的一个很好的例子。在将汽车的原始图像输入到CNN模型后,我们可以通过卷积和ReLU激活层传递一些简单粗糙的特征,如边缘和点。

    58840

    图视觉模型崛起 | MobileViG同等精度比MobileNetv2快4倍,同等速度精度高4%!

    传统上,卷积神经网络(CNN)和Vision Transformer(ViT)主导了计算机视觉。然而,最近提出的Vision Graph神经网络(ViG)为探索提供了一条新的途径。...尽管通过反向传播训练的神经网络是在20世纪80年代发明的,但它们被用于更小规模的任务,如字符识别。...图神经网络(GNN)已发展为在基于图的结构上运行,如生物网络、社交网络或引文网络。GNN甚至被提议用于节点分类、药物发现、欺诈检测等任务,以及最近提出的视觉GNN(ViG)的计算机视觉任务。...作者提出的模型MobileViG在3个具有代表性的视觉任务(ImageNet图像分类、COCO目标检测和COCO实例分割)上的准确性和/或速度与现有的Vision Graph神经网络(ViG)、移动端卷积神经网络...作者将移动端架构设计分为两大类:卷积神经网络(CNN)模型和混合CNN-ViT模型,它们融合了CNNs和ViT的元素。

    52840

    深度学习基础之卷积神经网络

    卷积神经网络(Convolutional Neural Network, CNN)是深度学习领域中一种重要的神经网络模型,尤其在图像处理和计算机视觉领域有着广泛的应用。...其中,卷积层负责提取图像的局部特征,池化层用于降低特征维度和防止过拟合,全连接层则用于最终的分类或回归任务。这些层级通过激活函数如ReLU进行非线性变换,以增强模型的表达能力。...CNN的核心思想在于使用卷积核(滤波器)对输入图像进行卷积操作,生成特征图(feature map),然后通过池化操作减少计算量并保留重要信息。...真正意义上的卷积神经网络 1989年,Yoshua Bengio、Yann LeCun和Geoffrey Hinton等人设计出了第一个真正意义上的卷积神经网络,用于手写数字识别。...其主要思想是通过卷积层、参数共享和下采样等操作来提取特征,并使用全连接神经网络进行分类识别。LeNet-5是最著名的版本,包含两个卷积层、三个最大池化层和两个全连接层,总共约有20万参数。

    21310
    领券