首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenCV图像处理(十一)---图像梯度

在上期的文章中,我们学习了图像的形态学技术,知道了开运算和闭运算,今天我们来学习图像的梯度知识,这对以后的图像边缘检测尤为重要,涉及到一部分数学知识,但是很简单,最后我会用一句话来概括,接着往下看。...图像梯度 图像梯度可以把图像看成二维离散函数,图像梯度简单来说就是求导,在图像上表现出来的就是提取图像的边缘(横向、纵向等等)。...上高数的时候,我们都是连续函数,因此这个值可以取得很小,ϵ可以理解为x的最小前进步伐,但是图像是一个离散的二维函数,ϵ不能取得很小,图像中像素来离散的,而像素之间最小的距离是1,ϵ取为1,所以,上面的公式变为...,因此只需要重点关注cv2.Scharr()这个函数即可,一共三个参数,第一个是需要计算梯度的图像,第二个是图像的数据格式,第三个参数为1,0或者0,1,分别对应x方向与y方向,一般情况下,单独梯度计算出来后都会进行叠加以增强效果...1.4 效果展示 x 方向梯度图像: y 方向梯度图像: x,y梯度叠加图像: (可以看到,图像的边缘已经被检测出来了,后期我们可能继续深入讲解) 结语 今天的知识分享结束了,虽然涉及到了一定的数学知识

45620

腾讯云双十一购买云产品特惠和购买攻略剖析

正好腾讯云双十一活动,对于需要购买或者续费云产品的用户来说。这一波福利不容错过,可以大大节省成本。...下面给大家介绍一下本次活动的一些介绍和攻略,希望大家购买云产品可以节省一笔不小的费用,感兴趣的可以了解一下!...一、活动介绍今年腾讯云双十一特惠活动截止到11月底,目前还有半个月左右的时间,大家有需要的可以抓紧时间选购。...这个对于个人开发者非常友好,买一年可以同等价格续费一次,这个非常给力,大家购买服务器应该都知道,原价续费的价格一般和首次购买价格相差好几倍。...总结以上是腾讯云双十一特惠拼团活动的介绍和攻略,趁着活动还有半个月左右,有需要采购云产品的朋友们不要错过这波福利哦!

15640
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV图像处理专栏十一 | IEEE Xplore 2015的图像白平衡处理之动态阈值法

    算法介绍 这是OpenCV图像处理专栏的第十一篇文章,之前介绍过两种处理白平衡的算法,分别为灰度世界算法和完美反射算法。今天来介绍另外一个自动白平衡的算法,即动态阈值法,一个看起来比较厉害的名字。...算法原理 和灰度世界法和完美反射算法类似,动态阈值算法仍然分为两个步骤即白点检测和白点调整,具体如下: 白点检测 1、把尺寸为的原图像从空间转换到空间。 2、把图像分成个块。...5、调整原图像:Ro= R*Rgain; Go= G*Ggain; Bo= B*Bgain; 代码实现 块的大小取了100,没处理长或者宽不够100的结尾部分,这个可以自己添加。...j)[0] = B; dst.at(i, j)[1] = G; dst.at(i, j)[2] = R; } } return dst; } 效果 图像均为算法处理前和处理后的顺序

    95320

    医学图像处理案例(十一)——3D骨架提取算法

    1、常见3D骨架提取算法 常见的两种图像细化方法有(1)、核滤波器,(2)、决策树。...核滤波器方法是将结构元素应用在图像上,例如迭代地侵蚀物体的表面,直到仅保留骨架为止,该方法通常可以扩展到更高维度上。...决策树方法是迭代处理26邻域内中目标和背景体素所有可能的二进制组合,并在每次迭代时找到所有可删除的表面点,虽然该方法仅限于2D和3D,但却比形态滤波器运算速度快。...该函数非常简单,只需要输入二值化的图像即可,输出是3D骨架图像。...(如果输入非二值化图像,该函数会默认将非零值设置成1) 该函数既可以在C++中使用,也可以在Python中使用,下面将给出C++和Python使用例子。

    4.2K20

    图像处理之三种常见双立方插值算法

    详解几种常见的双立方插值技术!好东西记得分享 图像插值技术概述图像插值技术在图像几何变换、透视变换等过程中是必不可少的技术环节,可以说像素插值方法最终决定变换之后的图像质量高低。...常见的插值方法有临近点插值双线性插值双立方插值内插值三角插值等插值方法。 其中双立方插值效果比较好而在很多高质量图像变换中得到广泛应用,根据插值之后效果的不一样的,双立方插值可以分为几种插值方式。...首先来看一下双立方插值基本解释与说明。双立方插值计算涉及到16个像素点,其中(i’, j’)表示待计算像素点在源图像中的包含小数部分的像素坐标,dx表示X方向的小数坐标,dy表示Y方向的小数坐标。...具体可以看下图:根据上述图示与双立方插值的数学表达式可以看出,双立方插值本质上图像16个像素点权重卷积之和作为新的像素值。其中R(x)表示插值表达式,可以根据需要选择的表达式不同。...,都有一定模糊这里时候可以通过后续处理实现图像锐化与对比度提升即可得到Sharpen版本当然也可以通过寻找更加合适的R(x)函数来实现双立方卷积插值过程时保留图像边缘与对比度。

    2.3K20

    双十一购买服务器能做到多便宜

    一、双十一拼团活动开始啦 !!!点击这里进入拼团活动,大额优惠卷,新人卷免费送!!! 这么大的优惠,还不来采购么? 那么买服务器可以做什么呢,请看我的下一篇文章 双十一服务器应用篇。...支付说明 活动页面展示的折扣仅供参考,实际以最终成交价格为准; 若订单提交未支付将占用购买资格,建议您在完成已有订单状态后再继续选购,查看未完成支付订单 60分钟内未完成支付,订单将自动过期,请下单后尽快支付...;达到购买数量和次数限制后若取消订单,5分钟内恢复对应次数的购买资格; 特殊说明 新用户说明 腾讯云新用户:在腾讯云无订单记录或累积订单金额为0; 产品新用户:该产品无订单记录或该产品的累积订单金额为0...; “首单限时特惠”商品仅限产品新用户购买,同一账号限购1次; “产品首单特惠”商品仅限产品新用户购买,同一实名认证主体限购1次,如相同实名认证主体的其他账号已购买过同类产品,则不支持再次购买,查找同实名认证主体下的所有账号...;已购买过同类产品的账号,更换实名认证主体后,仍不享有新用户优惠资格和产品首单优惠资格; 云服务器CVM(含GPU云服务器)、轻量应用服务器视为同一类商品,如前期已购买过云服务器CVM,无法再享受轻量应用服务器产品首单价格

    11610

    图像处理-图像增强

    图像增强前期知识 图像增强是图像模式识别中非常重要的图像预处理过程。...图像增强的目的是通过对图像中的信息进行处理,使得有利于模式识别的信息得到增强,不利于模式识别的信息被抑制,扩大图像中不同物体特征之间的差别,为图像的信息提取及其识别奠定良好的基础。...一幅输入图像经过灰度变换后将产生一幅新的输出图像,由输入像素点的灰度值决定相应的输出像素点的灰度值。灰度变换不会改变图像内的空间关系。图像的几何变换是图像处理中的另一种基本变换。...相应地,对图像的低频部分进行增强可以对图像进行平滑处理,一般用于图像的噪声消除。 3、频域增强 图像的空域增强一般只是对数字图像进行局部增强,而图像的频域增强可以对图像进行全局增强。...图像增强的方法分类: |图像增强方法|实现方法| |-|-| |处理对象|灰度图| ||(伪)彩色图| |-|-| |处理策略|全局处理| ||局部处理(ROI ROI,Region of Interest

    5.8K21

    图像处理-图像滤波

    和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ 高斯分布:h(x,y)=e^-(\frac{x^2+y^2}{2a^2}) 双边滤波 一种非线性的滤波方法,是结合图像的空间邻近度和像素相似度的的一种折中处理...中心像素的距离和灰度差值的增大,邻域像素的权系数逐渐减小 优点:保持边缘性能良好,对低频信息滤波良好 缺点:不能处理高频信息 假设高斯函数表达式如下: W_ij=\frac{1}{K_i}e^-\frac...其中: f:待滤波图像 w:滤波模板 option1, option2:可选项 可选项分为: (1) 边界项:遍历处理边界元素时,需要提前在图像边界周围补充元素 参数:`X`--表示具体的数字,默认用...`0`补充 `symmetric`--镜像边界元素 `replicate`--重复边界像素 `circular`--周期性填充边界内容 (2) 尺寸项:处理图像前扩充了边界,比原图大一圈,此项输出图像大小...,首先把图像通过傅里叶变换将图像从空间域转换到频率域,频域处理,反傅里叶变换转到空间域 |||| |-|-|-| |||| C++代码 均值滤波 void meanFilter (unsigned char

    5.7K21

    图像处理-图像融合

    一般情况下,我们先会对不同传感器取得的各自信息及信号进行一个整合加强过程,例如图像间的配准,图像边缘增强,图像纹理平滑,抑制背景杂波等;然后我们要做的是对于融合层和融合算法的选取,不同的算法处理方式和提取特征信息的方法不同...2、对于同一目标的多源图像信号的采集。通过传感器进行目标信号采集,采集过程虽然简单,却可也不能轻视,好的采集方法可以获得更优质的信号信息,为后续的信号处理过程打下基础。 3、对于采集信号的预处理。...收集到的信号不一定直接就能用,在进行图像融合之前,对采集到的信号进行去噪、增强、配准等预处理,可以大大提高图像的对比度以及分辨率,有助于图像融合效果的进一步提高。 4、图像融合过程。...图像融合处理过程的流程框图如下: 不同的层次所进行数据处理的要求和融合算法是不一样的,需要具体问题具体分析,通常我们将图像数据分为三层,融合过程流程图如下: 图像融合层简介: 1、基于像素级的图像融合属于最基本的图像融合技术...这一层主要是直接处理图像的单像素,因为像素级是由源场景的图像最大化描述的。像素级图像融合需要对图像进行预处理,包括图像配准、滤波和增强。

    1.9K20

    图像处理-图像噪声

    图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。...椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。...椒盐噪声严重影响图像的视觉质量,给图像的边缘检测、纹理或者特征点提取等造成困难。...Based algorithm for removal of high density impulse noises) 一般会选择先检测再滤波的思路,通过开关机制抑制噪声,上述方法对低噪声水平的椒盐噪声处理效果良好...因为基于中值的滤波方法仅考虑图像局部区域像素点的顺序阶信息,没有充分利用像素点之间的相关性或相似性。噪声像素点的估计值可能与真实值有较大偏差,很难保持图像的细节信息。

    1.8K10

    图像处理

    图像处理 图像处理一般指数字图像处理,大多数依赖于软件实现。 其目的是去除干扰、噪声,将原始图像编程为适合计算机进行特征提取的形式。...图像处理主要包括图像采集、图像增强、图像复原、图像编码与压缩和图像分割。 图像采集 数字图像数据提取的方式 图像增强 为了使图像的主体结构更加明确,必须对图像进行改善。...例如静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,处理为适用于网络传输的数码相片、彩色照片等方面。...采集图像受到各种条件影响,模糊,噪声干扰,图像分割会遇到困难。 图像识别 图像识别是将处理得到的图像进行特征提取和分类。...特别适合处理需要同时考虑许多因素和条件的问题,以及信息模糊或不精确等不确定性问题。 应用过程中存在收敛速度慢、训练量大、训练时间长,局部最优,识别分类精度不够,难以适用于经常出现新模式的场合。

    1.7K40

    购买服务器之------腾讯云双十一活动攻略

    一、双十一拼团活动开始啦 !!!点击这里进入拼团活动,大额优惠卷,新人卷免费送!!!...然后通过wifi模组进行联网控制 3、数据存储器 还在用网速只有100kb的百度网盘么,你需要一个自己的在线云盘,然后搭建自己的网络存储器,随时随地的查看自己的资料 三、 活动内容: 活动亮点 (一)双十一上云拼团...(二)会员双十一冲榜活动 1. 活动时间:11.1~11.30 2....面向会员用户,双十一送上双重礼,个企同享:「第一重礼」消耗到特定金额,即时送上满减代金券,可累积领取1512元代金券;「第二重礼」冲榜大礼-截止活动结束日11.30 23:59,榜单Top50,将获得高额代金券和最高价值万元的惊喜礼品

    11711

    图像处理新框架 | 语义与复原指令双引擎,谷歌研究院提出文本驱动图像处理框架TIP

    文本驱动的扩散模型在各种图像编辑任务中越来越受欢迎,包括修复,风格化和对象替换。 然而,采用语言视觉范式更精细的图像处理任务(如去噪,超分辨率,去模糊和压缩伪影去除)仍然是一个开放的研究问题。...在本文中,我们开发了TIP:一个文本驱动的图像处理框架,利用自然语言作为一个用户友好的界面来控制图像恢复过程。 我们从两个维度考虑文本信息的容量。...本文方案 基于LDM框架,本文提出了一种新的图像恢复范式:文本驱动的图像恢复。 我们的方法的目标是基于条件 \{y,c_s,c_r \} 恢复图像 x \text{ or } z_0 。...我们使用 y = Deg(x,c_r) 来表示将干净图像x变成其退化 y_i 的退化过程。 上述文本驱动的图像恢复模型 p(z_t| \{y,c_s,c_r\}) 可以使用配对数据来训练。...我们使用文本图像数据集Pali:每个干净的图像 x 具有与之成对的语义提示 c_s ;然后,使用Real-ESRGAN合成退化数据 y = Deg(x,c_r) ,产生最终的配对训练数据 (x \text

    25110

    图像上的算术运算 | 十一

    图像加法 您可以通过OpenCV函数cv.add()或仅通过numpy操作res = img1 + img2添加两个图像。两个图像应具有相同的深度和类型,或者第二个图像可以只是一个标量值。...图像融合 这也是图像加法,但是对图像赋予不同的权重,以使其具有融合或透明的感觉。根据以下等式添加图像: ?...G(x)= (1 - \alpha)f_0(x)+ \alpha f_1 通过从 α 从 0→1 更改,您可以在一个图像到另一个图像之间执行很酷的过渡。 在这里,我拍摄了两个图像,将它们融合在一起。...第一幅图像的权重为0.7,第二幅图像的权重为0.3。cv.addWeighted()在图像上应用以下公式。 ? 在这里γ 被视为零。...它们在提取图像的任何部分(我们将在后面的章节中看到)、定义和处理非矩形 ROI 等方面非常有用。 下面我们将看到一个例子,如何改变一个图像的特定区域。 我想把 OpenCV 的标志放在一个图像上面。

    1.1K10

    图像处理-图像去雾

    图像处理-图像去雾 雾图模型 I(x)=J(x)t(x)+A(1-t(x)) I(x) ——待去雾的图像 J(x)——无雾图像 A——全球大气光成分 t——折射率(大气传递系数) 暗通道先验 在无雾图像中...总之,自然景物中到处都是阴影或者彩色,这些景物的图像的暗原色总是很灰暗的。...首先求出每个像素RGB分量中的最小值,存入一副和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波(邻域中取最小值) 验证了暗通道先验理论的普遍性 计算折射率 t(x)=1-wmin(minI...(y)/A) 估计大气光 1.选取暗通道图像暗通道最亮的0.1%的像素(一般来说,这些像素表示雾浓度最大的地方) 2.取输入图像里面这些像素对应的像素里面最亮的作为大气光 (暗图像最亮的0.1%的像素对应的原图最亮的为大气光...去雾 J(x)=I(x)-A/max(t(x),t0) +A t0=0.1 流程: 1.求图像暗通道 2.利用暗通道计算出折射率 3.利用暗通道估计大气光 4.代回雾图公式去雾 我的代码-图像去雾算法Matlab

    3.3K20
    领券