摘要
该文给出了针对用于线上购物的面向任务的对话系统的一个一般的解决方案, 目标是协助用户完成多样化的购买相关任务, 比如搜索商品和回答问题, 如同正常人之间的对话....作为一个创始工作, 我们会展现NLP的技术, 数据源以及可以利用的众包来建立这样一个关于电子商务的面向任务的对话系统....为了示范它的效果, 我们将我们的系统集成到一个移动端在线购物应用, 据我们所知道的最好的消息, 这个系统实际用于百万级别的用户群体, 我们的实验部分将会展现有趣的和有深刻见解的观察, 基于人机对话日志的分析...介绍
一般来说, 对话系统分为面向任务的以及非面向任务的系统, 而本文中的线上购物的对话系统既需要面向任务, 同时也需要具备普通交流的功能, 但是以前我们利用特定领域的知识来对语义槽进行设计和填充, 不过这种方法在整个系统冷启动的条件下很难进行应用...我们提出的方法和之前的方法主要有两个不同:
训练数据
大多数之前的对话系统依赖于带有标记的数据作为有监督的学习, 最终训练一个统计模型来实现槽的填充, 对话状态跟踪, 策略选择等, 但是这样带有标记的数据在实际应用上基本没有