首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

2014-NIPS-Two-Stream Convolutional Networks for Action Recognition in Videos

这篇文章[1]主要研究了如何有效地将深度学习用在动作识别领域。作者提出,这个任务的主要挑战在于如何让神经网络同时捕获到两种信息:一种是 appearance 信息(比如物体的大小、形状等静态信息),另一种是 motion 信息(即物体的运动信息)。这篇文章的主要贡献有三点,第一是提出了一个基于 CNN 的双流网络,它同时结合了时空间信息;第二,作者展示了即使只有少量训练数据,基于 CNN 的神经网络在视频帧的光流信息上进行训练能取得很好的性能;最后,作者展示了双流网络在多任务学习上的潜力,作者在两个数据集上同时训练一个双流骨干网络,相比于使用单一数据集,训练后的网络在两个数据集上都有性能提升。作者在 UCF-101 和 HMDB-51 数据集上进行了实验,效果能和当时的 SOTA 方法(当时还是非深度的方法)性能相当,比之前使用神经网络的方法要好很多。

01
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    初识行为识别

    随着互联网的不断发展,各种应用的不断推广。数据无论从存储,格式,形式,类型等方面都趋向于多样化,丰富化,指数化。数据就是价值,为何这么说呢?在机器学习,深度学习推动下,训练数据需求很大。对于分类模型,训练数据越多,分类器的准确度会在一定程度上更精确。行为识别可以说就是在这基础上演变出来的一个研究分支。那么什么是行为识别呢?我的理解是这样的,比如对于某个图片或者视频中的某个信息进行捕获,我们可以使用特征工程进行特征提取,这些特征提取说白了就是基于对图片局部中像素进行操作,对于视频,我们可以将视频按帧分解成图片,常用工具有ffmpeg,也可以使用python中基于视频分解图片的模块包自行通过调用处理。对于得到的图片,我们可以对其进行特征提取,比如常用的特征提取方法有Haar,Hog等,它们在结合具体的分类器比如adaboost,svm等可以对图片中相关特征精确提取达到一定准确度。有了特征之后,我们可以使用机器学习中分类器或者深度学习中的分类器利用已经得到特征进行训练,之后对未知图片进行预测,这也就达到了行为识别的目的。 行为识别存在问题?由于受到视频背景混乱、闭塞、视点变化等原因,对行动的准确识别是一项极具挑战性的任务,大多数现有方法对拍摄视频的环境做出某些假设。然而,这种假设在现实环境中很少成立。此外,大多数在这些方法都遵循传统的模式模式识别,包括两个步骤,第一步从原始视频中计算并提取特征,第二步通过该特征训练分类器。在现实世界中在场景中,很少知道哪些特征对手头的任务很重要,因为特征的选择是高度依赖问题。特别是对于人类行为识别。 行为识别的发展从哪开始呀?关于行为识别最早开始于19世纪中后期,科学家首先在动物行为方面进行了机械学研究[1]。但是由于当时的计算机不能处理大规模的数据计算,行为识别的研究也没有得到重视。直到20年代末期,关于行为识别的研究也是寥寥可数,当时的研究人员通过采集大量的实验数据进行分析和研究,训练并构建模型,然后匹配模型和行为序列,最终达到行为理解的目的。由于计算量的规模性,当时的研究只能局限于分析简单的行为运动。进入本世纪后,世界上多家名校和研究机构都在行为识别进行了深入研究和探索[2]。在工业界,行为识别可以说占据了普遍优势,如行程规划,用户社交行为,人员调度等领域已经出现了行为识别的相关应用。行为识别和模式识别比较火热的研究话题。 行为识别的的发展如何呢?目前行为识别的主要有两大流派:Two-Stream和C3D。Two-Stream的思想是是基于视频帧图像,其表示的是静态信息和对视频序列中每两帧计算密集光流得到的光流序列,该序列表示的是时序信息,然后利用相关深度网络对它们分别训练出一个模型,在各自网络产生结果后,对结果进行融合;它能有效的从一张图片中识别出行为的类别。利用双流CNN网络分别基于RGB图像和由视频得到的光流序列各自训练一个模型,这两个模型分别对动作进行判断,最后将两这训练结果进行融合,在UCF-101数据库上准确率达到88%,在HMDB51行为数据库达到59.4%[3]。将双流网络改成VGG-16网络,VGG-16卷积神经网络探索了深度与其性能之间的关系,通过反复堆叠33的小型卷积核和22的最大池化层,层数为16层,经实验提高了准确率[4]。C3D对CNN中的卷积(convolution)操作和池化(pooling)操作进行改良,其采用3D卷积核,在时间和空间维度上进行操作,能捕捉到视频流中的运动信息。一个用于人类行为识别的3D CNN架构,该体系结构由1个硬接线层、3个卷积层、2个子采样层和1个全连接层组成,以7帧尺寸为60×40帧作为3D CNN模型的输入。采用不同的卷积规模,最终在TRECVID DATA上的精准率达到了71.37%[5]。 可能对于深入的研究可能还有需要多去研究相关论文,多去动手上机实验。谢谢!

    02

    深度学习时代下的RGB-D显著性目标检测研究进展

    摘要:受人类的视觉注意力机制启发,显著性目标检测任务旨在定位给定场景中最吸引人注意的目标或区域。近年来, 随着深度相机的发展和普及, 深度图像已经被成功应用于各类计算机视觉任务, 这也为显著性目标检测技术提供了新思路。通过引入深度图像, 不仅能使计算机更加全面地模拟人类视觉系统, 而且深度图像所提供的结构、位置等补充信息也可以为低对比度、复杂背景等困难场景的检测提供新的解决方案。鉴于深度学习时代下RGB-D显著目标检测任务发展迅速,旨在从该任务关键问题的解决方案出发,对现有相关研究成果进行归纳、总结和梳理,并在常用RGB-D SOD数据集上进行不同方法的定量分析和定性比较。最后, 对该领域面临的挑战及未来的发展趋势进行总结与展望。

    04

    双流网络介绍

    双流CNN通过效仿人体视觉过程,对视频信息理解,在处理视频图像中的环境空间信息的基础上,对视频帧序列中的时序信息进行理解,为了更好地对这些信息进行理解,双流卷积神经网络将异常行为分类任务分为两个不同的部分。单独的视频单帧作为表述空间信息的载体,其中包含环境、视频中的物体等空间信息,称为空间信息网络;另外,光流信息作为时序信息的载体输入到另外一个卷积神经网络中,用来理解动作的动态特征,称为时间信息网络,为了获得比较好的异常行为分类效果,我们选用卷积神经网络对获得的数据样本进行特征提取和分类,我们将得到的单帧彩色图像与单帧光流图像以及叠加后的光流图像作为网络输入,分别对图像进行分类后,再对不同模型得到的结果进行融合。双流卷积神经网络结构如下图所示:

    02

    MIT 对抗学习和无监督学习最新进展:机器学会创作视频,预测人类行为

    【新智元导读】LeCun曾在演讲中提到,2016年深度学习领域最让他兴奋的技术莫过于对抗学习,而无监督学习一直都是人工智能研究者孜孜追求的“终极目标”之一。MIT 计算机科学和人工智能实验室的研究员们在本年度的NIPS上提交了结合对抗学习和无监督学习两种方法的研究——让计算机在观看了200万条视频后自动“创作”视频内容,结果非常逼真。研究所开发的深度学习神经网络也可以直接用到现有的图片和视频中,把静态图片变成动态视频,并且对人类的动作具有一定的判断和预测能力。 MIT 计算机科学和人工智能实验室(CSAIL

    010

    EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

    显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

    01

    爆肝|终于有人把图深度学习讲清楚了

    图(Graph)作为一种灵活的数据结构,广泛存在于大量的实际问题当中,包括社交网络、通信网络、物流网络、疾病传播网络,乃至药物分子结构等。 近些年来,由深度学习掀起的技术革命颠覆了一个又一个领域。图作为一类重要的数据结构,自然要当仁不让,拥抱这次革命。这也自然而然地成就了图深度学习这一新兴领域。 在图深度学习中,各类图神经网络模型在各大计算机相关领域的应用都取得了巨大成功,比如数据挖掘领域中的社交网络分析任务、交通网络预测任务,以及计算机科学领域的程序分析任务等。 除此之外,图神经网络模型还为各类跨学科领域

    01
    领券