首页
学习
活动
专区
圈层
工具
发布

Python按要求提取多个txt文本的数据

在这里,我们使用制表符作为分隔符,并将数据存储在DataFrame对象df中。   ...然后,我们根据给定的目标波长列表target_wavelength,使用条件筛选出包含目标波长的数据行,并将文件名插入到选定的DataFrame中,即在第一列插入名为file_name的列——这一列用于保存我们的文件名...接下来,在我们已经提取出来的数据中,从第二行开始,提取每一行从第三列到最后一列的数据,将其展平为一维数组,从而方便接下来将其放在原本第一行的后面(右侧)。...并将结果存储在result_df中。   ...由于我这里的需求是,只要保证文本文件中的数据被提取到一个变量中就够了,所以没有将结果保存为一个独立的文件。

1.1K10

Python按要求提取多个txt文本的数据

在这里,我们使用制表符作为分隔符,并将数据存储在DataFrame对象df中。   ...然后,我们根据给定的目标波长列表target_wavelength,使用条件筛选出包含目标波长的数据行,并将文件名插入到选定的DataFrame中,即在第一列插入名为file_name的列——这一列用于保存我们的文件名...接下来,在我们已经提取出来的数据中,从第二行开始,提取每一行从第三列到最后一列的数据,将其展平为一维数组,从而方便接下来将其放在原本第一行的后面(右侧)。...并将结果存储在result_df中。   ...由于我这里的需求是,只要保证文本文件中的数据被提取到一个变量中就够了,所以没有将结果保存为一个独立的文件。

1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python数据分析实战之数据获取三大招

    pandas不仅可以读取open()函数所读取的文本文件及其他各类文件,最重要的是pandas读取结果为DataFrame数据框,后续的数据处理更为方便。...坑1:index列。保存文件时默认保存索引,读取文件时默认自动添加索引列,即将保存的索引作为第一列读取到DataFrame。.../test.csv', index_col=0) ---- 坑2:原本日期格式的列,保存到csv文件后仍为日期格式。但再次读取文件时将以字符串的格式读取到DataFrame。...delimiter : str, optional 字符串, 选填, 默认空格, 用来分隔多个列的分隔符, 如逗号、TAB符。...count : int 整数型, 读取数据的数量, -1意味着读取所有的数据。 sep : str 字符串, 如果文件是文本文件, 那么该值为数据间的分隔符。

    8.1K30

    Python数据分析实战之数据获取三大招

    pandas不仅可以读取open()函数所读取的文本文件及其他各类文件,最重要的是pandas读取结果为DataFrame数据框,后续的数据处理更为方便。...坑1:index列。保存文件时默认保存索引,读取文件时默认自动添加索引列,即将保存的索引作为第一列读取到DataFrame。.../test.csv', index_col=0) ---- 坑2:原本日期格式的列,保存到csv文件后仍为日期格式。但再次读取文件时将以字符串的格式读取到DataFrame。...delimiter : str, optional 字符串, 选填, 默认空格, 用来分隔多个列的分隔符, 如逗号、TAB符。...count : int 整数型, 读取数据的数量, -1意味着读取所有的数据。 sep : str 字符串, 如果文件是文本文件, 那么该值为数据间的分隔符。

    7.7K20

    【无痛学Python】Pandas数据载入与预处理,看这一篇就够了!

    我们要把各种格式的数据转换成Pandas可处理的Series和DataFrame数据格式,进行完数据分析与处理之后再重新存储到外部文件中,这就是Pandas的数据载入与预处理。...数据载入 其实对于读/写文件和存储文件来说,不同类型文件的函数格式都差不多,遵循以下格式: 读/写文件:read_xxx 存储文件:to_xxx 区别主要还是在参数类型的不同上。...1.读/写文本文件 文本文件是一种由若干行字符构成的文件,同时它也是一种按照顺序来进行书写的文件。 文本文件分为普通的文本文件和CSV文件。...CSV文件是一种使用逗号分隔的文件格式,但因为有时候又不一定是逗号,所以也被称为 字符分隔文件 。 文本文件都以纯文本形式保存数据。...3.使用三倍标准差法则 异常值被定义为一组测定值中与平均值的偏差超过三倍标准差的值。

    33110

    产生和加载数据集

    逐行读取文件 逐行读取的第一种方法是直接通过循环对文件对象进行操作,每次读取出的一行行末的换行符可通过 restrip()函数删除 第二种方法是直接调用文件对象的 readline()方法,该方法将会返回一个字符串组成的列表...,列表中每一个字符串包含一行,且有结尾换行符。...通过 in 来搜寻拼接后的字符串中是否有搜寻的字符串。...).reshape(4,-1) (让计算机自行计算列数,-1) print('创建的数组为:',arr) np.savetxt("d:/code/tmp/arr.txt",arr,fmt="%d",delimiter...多种压缩模式,存储高效,但不适合放在内存中 非数据库,适合于一次写入多次读取的数据集(同时写入多个容易崩溃) frame = pd.DataFrame({'a': np.random.randn(100

    3.2K30

    Python数据分析之Pandas读写外部数据文件

    数据分析、数据挖掘、可视化是Python的众多强项之一,但无论是这几项中的哪一项都必须以数据作为基础,数据通常都存储在外部文件中,例如txt、csv、excel、数据库。...下表是Pandas官方手册上给出的一张表格,表格描述的是Pandas中对各种数据文件类型的读、写函数,你可以直接在官方手册中找到: ?...Pandas数据写入到文本文件中,常用参数如下: (1)path_or_buf:表示路径的字符串或者文件句柄。...例如指定分隔符为’-‘将之前读取的数据写入文件中: >>> df.to_csv('data_1.txt', sep='*') 写入后data_1.txt文件内容如下: *第一列*第二列*第三列*第四列0...,列表的元素可以使索引,也可以是字符串,例如[0, 1, 'Sheet3']表示读取第一张、第二张和名为Sheet3的3张Sheet,返回的数据是以列表元素为键包含数据的DataFrame对象为值的字典

    2.5K10

    Python数学建模算法与应用 - 常用Python命令及程序注解

    b = a.iloc[1:3, 0:2].values 这行代码提取了 DataFrame a 中第二行到第三行以及第一列到第二列的数据,并将其存储在一个名为 b 的 NumPy 数组中。...b = np.loadtxt("data2_43_1.txt") # 加载空格分隔的文本文件 这行代码使用 np.loadtxt() 函数加载空格分隔的文本文件 "data2_43_1.txt",并将数据存储在变量..._43_2.csv",指定逗号作为元素之间的分隔符,并将数据存储在变量 c 中。...这段代码的功能是生成随机数矩阵 a,并将该矩阵以不同的格式存储为文本文件。然后,通过 np.loadtxt() 函数加载这些文本文件中的数据,并存储在变量 b 和 c 中。...数据存储在名为a的pandas DataFrame中。 b = a.T 这行代码对DataFrame a进行转置,交换行和列,并将转置后的DataFrame赋值给b。

    3.3K30

    pandas读取数据(1)

    1、文本格式数据读写 将表格型数据读取为DataFrame是pandas的重要特性,下表总结了实现该功能的部分函数。...pandas的解析函数 函数 描述 read_csv 读取csv文件,逗号为默认的分隔符 read_table 读取table文件,也就是txt文件,制表符('\t')为默认分隔符 read_clipboard...文件中读取所有表格数据 read_json 从JSON字符串中读取数据 read_sql 将SQL查询结果读取为pandas的DataFrame read_stata 读取Stata格式的数据集 read_feather...可以指定行和列的标签是否被写入,值为True或False;columns可以根据指定的列的顺序传入。...(2)na_rep:标注缺失值 (3)index:是否输出索引,默认输出 (4)header:是否输出列名,默认输出 (5)columns:指定输出时列的顺序 数据的读取和存储十分重要,规范化的数据能为后续的数据分析大大节约时间

    2.9K20

    Python八种数据导入方法,你掌握了吗?

    数据分析过程中,需要对获取到的数据进行分析,往往第一步就是导入数据。导入数据有很多方式,不同的数据文件需要用到不同的导入方式,相同的文件也会有几种不同的导入方式。下面总结几种常用的文件导入方法。 ?...Flat 文件是一种包含没有相对关系结构的记录的文件。(支持Excel、CSV和Tab分割符文件 ) 具有一种数据类型的文件 用于分隔值的字符串跳过前两行。 在第一列和第三列读取结果数组的类型。...comment='#', # 分隔注释的字符 na_values=[""]) # 可以识别为NA/NaN的字符串 二、Excel 电子表格 Pandas中的...通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象。...= 'H-H1_LOSC_4_v1-815411200-4096.hdf5' data = h5py.File(filename, 'r') 七、Matlab 文件 其由matlab将其工作区间里的数据存储的后缀为

    4.1K40

    Spark SQL实战(07)-Data Sources

    将DataFrame注册为临时视图可以让你对其数据运行SQL查询。 本节介绍使用Spark数据源加载和保存数据的一般方法,并进一步介绍可用于内置数据源的特定选项。...lineSep:如果指定,则使用指定的字符串作为行分隔符。 pathGlobFilter:用于筛选文件的通配符模式。 recursiveFileLookup:是否递归查找子目录中的文件。...allowNonExistingFiles:是否允许读取不存在的文件。 allowEmptyFiles:是否允许读取空文件。 返回一个 DataFrame 对象,其中每行是文本文件中的一条记录。...的输出: 第一次0K 第二次也会报错输出目录已存在 这关系到 Spark 中的 mode SaveMode Spark SQL中,使用DataFrame或Dataset的write方法将数据写入外部存储系统时...由Hadoop生态系统中的Apache Parquet项目开发的。 6.2 设计目标 支持高效的列式存储和压缩,并提供高性能的读/写能力,以便处理大规模结构化数据。

    1.1K40

    Spark SQL 外部数据源

    schema .load() 读取模式有以下三种可选项: 读模式描述permissive当遇到损坏的记录时,将其所有字段设置为 null,并将所有损坏的记录放在名为 _corruption...二、CSV CSV 是一种常见的文本文件格式,其中每一行表示一条记录,记录中的每个字段用逗号分隔。...四、Parquet Parquet 是一个开源的面向列的数据存储,它提供了多种存储优化,允许读取单独的列非整个文件,这不仅节省了存储空间而且提升了读取效率,它是 Spark 是默认的文件格式。...这意味着当您从一个包含多个文件的文件夹中读取数据时,这些文件中的每一个都将成为 DataFrame 中的一个分区,并由可用的 Executors 并行读取。...Bothseq任意字符,(逗号)分隔符Bothheadertrue, falsefalse文件中的第一行是否为列的名称。

    2.9K30

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    to_csv(…)方法将DataFrame的内容转换为可存储于文本文件的格式。你要指定分隔符,比如sep=‘,’,以及是否保存DataFrame的索引,默认是保存的。...用索引可以很方便地辨认、校准、访问DataFrame中的数据。索引可以是一列连续的数字(就像Excel中的行号)或日期;你还可以设定多列索引。...例如,range(0, 3)生成的序列是0,1,2. 存储数据到Excel文件中也很简单。仅需调用.to_excel(...)方法,第一个参数传你要保存数据的文件名,第二个参数传工作表的名字。...使用DataFrame对象的.apply(...)方法遍历内部每一行。第一个参数指定了要应用到每行记录上的方法。axis参数的默认值为0。意味着指定的方法会应用到DataFrame的每一列上。...分隔行中缺失了其它列。为了处理这个问题,我们使用DataFrame的.dropna (...)方法。 pandas有多种方法用于处理NaN(Not a Number)情况。

    10.1K20

    Python数据分析的数据导入和导出

    这个函数通常用于读取存储数据的JSON文件,以便在程序中对数据进行操作和处理。 参数说明: file_path:必需,一个字符串,表示要读取的JSON文件的路径。...read_html()函数是pandas库中的一个功能,它可以用于从HTML文件或URL中读取表格数据并将其转换为DataFrame对象。...如果HTML文件中有多个表格,则返回一个包含所有表格的列表,每个表格都以DataFrame对象的形式存储在列表中。...CSV文件是一种常用的文本文件格式,用于存储表格数据。该函数可以将DataFrame对象的数据保存为CSV文件,以便后续可以通过其他程序或工具进行读取和处理。...也可以设置为’ignore’、'replace’等 示例 【例】导入sales.csv文件中的前10行数据,并将其导出为sales_new.csv文件。

    2.6K10

    《利用Python进行数据分析·第2版》第6章 数据加载、存储与文件格式6.1 读写文本格式的数据6.2 二进制数据格式6.3 Web APIs交互6.4 数据库交互6.5 总结

    输入输出通常可以划分为几个大类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据,利用Web API操作网络资源。...日期解析:包括组合功能,比如将分散在多个列中的日期时间信息组合成结果中的单个列。 迭代:支持对大文件进行逐块迭代。...其它的数据格式,如HDF5、Feather和msgpack,会在格式中存储数据类型。 日期和其他自定义类型的处理需要多花点工夫才行。首先我们来看一个以逗号分隔的(CSV)文本文件: In [8]: !...将数据写出到文本格式 数据也可以被输出为分隔符格式的文本。...pandas有一个内置的功能,read_html,它可以使用lxml和Beautiful Soup自动将HTML文件中的表格解析为DataFrame对象。

    8.1K60

    2021年大数据Spark(三十二):SparkSQL的External DataSource

    例如,Parquet和ORC等柱状格式使从列的子集中提取值变得更加容易。 基于行的存储格式(如Avro)可有效地序列化和存储提供存储优势的数据。然而,这些优点通常以灵活性为代价。...text 数据 SparkSession加载文本文件数据,提供两种方法,返回值分别为DataFrame和Dataset,前面【WordCount】中已经使用,下面看一下方法声明: 可以看出textFile...()         ratingsDF.show(10, truncate = false)  第二点:首行不是列的名称,如下方式读取数据(设置Schema信息)       // 定义Schema...ratingsDF: DataFrame = spark.read             // 设置每行数据各个字段之间的分隔符, 默认值为 逗号             .option("sep"...:文件格式数据 文本文件text、csv文件和json文件  第二类:列式存储数据 Parquet格式、ORC格式  第三类:数据库表 关系型数据库RDBMS:MySQL、DB2、Oracle和MSSQL

    2.9K20

    Pandas必会的方法汇总,建议收藏!

    ,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。...9 .drop() 删除Series和DataFrame指定行或列索引。 10 .loc[行标签,列标签] 通过标签查询指定的数据,第一个值为行标签,第二值为列标签。...默认分隔符为制表符(t) 3 read_ fwf 读取定宽列格式数据(也就是说,没有分隔符) 4 read_clipboard 读取剪贴板中的数据,可以看做read_table的剪贴板版。...8 read_json 读取JSON字符串中的数据 9 read_msgpack 二进制格式编码的pandas数据 10 read_pickle 读取Python pickle格式中存储的任意对象 11...read_sas 读取存储于SAS系统自定义存储格式的SAS数据集 12 read_sql 读取SQL 查询结果为pandas的DataFrame 13 read_stata 读取Stata文件格式的数据集

    5.8K40
    领券