首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Git-合并两个不同的仓库

背景:由于拆分微前端,需要将最新代码合并到已经拆分的微前端项目,即需要将 2 个项目合并。...1.git 合并两个不同的仓库必备知识 1>.列出本地已经存在的分支 git branch 2>.查看当前 git 关联的远程仓库 git remote -v 3>.解除当前仓库关联的远程仓库 git...git checkout -b master origin/master //从其他的远程仓库切出一个新分支( //注意同一个仓库中不能存在2个同名分支,所以取个别名,但是同一个仓库中不同的分支可以关联多个远程仓库...# 《常见的 git 命令》 2.实际操作 1.项目仓库 现在有两个仓库 [leader/kkt](https://www.leader755.com) (主仓库)和 [leader/kkt-next]...# 请执行下面命令 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓ git merge other --allow-unrelated-histories 在合并时有可能两个分支对同一个文件都做了修改,这时需要解决冲突

2.4K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    cytof数据处理难点之合并两个不同panel的数据集

    前面我们已经完成了cytof数据处理的主要步骤,读入文件,质量控制,降维聚类分群,生物学注释和细胞亚群比例差异分析。...过滤不合格细胞和基因(数据质控很重要) 04. 过滤线粒体核糖体基因 05....合并两个不同panel的cytof数据集 有一些情况下,你的同一个实验项目的多个FCS文件,它们的抗体顺序并不一致。...SingleCellExperiment对象就包含了两个不同panel顺序的cytof数据集啦。...如果不仅仅是panel顺序不一样 panel本身也不一样,就比较麻烦了,不同的panel可能研究的生物学问题不一样,或许有批次效应等其它未知的混杂因素。 需要具体问题具体分析啦。

    1.7K20

    合并两个不同物种的单细胞转录组数据集注意harmony的参数

    这两个单细胞转录组表达量矩阵是可以很好的整合: 两个单细胞转录组表达量矩阵是可以很好的整合 其中小鼠的样品比较多:https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi...,因为小鼠基因的命名规则通常包括将所有字母转换为小写,这与人类基因的命名规则不同,后者通常以大写字母开头。...其实在进行跨物种的基因研究时,研究人员需要仔细核对基因的命名和序列信息,以确保研究的准确性。可以使用如Ensembl、UniProt或NCBI Gene等数据库来获取不同物种中基因的准确信息。...所以我对两个表达量矩阵取了共有基因的交集,然后就可以合并这两个矩阵啦, 如下所示: sceList = list( mouse = CreateSeuratObject( counts =...: 两个物种就比较好的整合在一起 而且也是可以比较好的进行亚群的命名,跟原文一样的有两个泾渭分明的内皮细胞,然后就是t细胞和巨噬细胞代表的淋巴细胞和髓系免疫细胞啦 ,同样的文献里面的巨噬细胞和平滑肌细胞的界限也是模糊不清

    29310

    手把手 | 数据科学速成课:给Python新手的实操指南

    Python非常适合数据管理和预处理,但不适用于数据分析和建模。 Python的Pandas库克服了这个问题。Pandas提供了(数值)表和时间序列的数据结构和操作。...最后,你应该建立两个独立的DataFrames,每个数据集都需要有一个。 小贴士:在这两个文件中,我们都有不同的分隔符。...因此,我们在Dataframes上应用索引和选择只保留相关的列,比如user_id(必需加入这两个DataFrames),每个会话和活动的日期(在此之前搜索首次活动和会话)以及页面访问量(假设验证的必要条件...Pandas最强大的操作之一是合并,连接和序列化表格。它允许我们执行任何从简单的左连接和合并到复杂的外部连接。因此,可根据用户的唯一标识符结合会话和首次活动的DataFrames。...删除首次活动后的所有会话 在上一步中使用简单的合并,我们为每个会话添加了首次活动的时间标记。通过比较会话时间标记与首次活动时间标记,你应该能够过滤掉无用的数据并缩小问题的规模。

    1.2K50

    Pandas实用手册(PART I)

    读入并合并多个CSV档案成单一DataFrame 很多时候因为企业内部ETL或是数据处理的方式(比方说利用Airflow处理批次数据),相同类型的数据可能会被分成多个不同的CSV档案储存。...假设在本地端dataset资料夹内有2个CSV档案,分别储存Titanic号上不同乘客的数据: ? 注意上面2个DataFrames的内容虽然分别代表不同乘客,其格式却是一模一样。...这种时候你可以使用pd.concat将分散在不同CSV的乘客数据合并成单一DataFrame,方便之后处理: ? 你还可以使用reset_index函数来重置串接后的DataFrame索引。...为特定DataFrame加点样式 pd.set_option函数在你想要把某些显示设定套用到所有 DataFrames时很好用,不过很多时候你会想要让不同DataFrame有不同的显示设定或样式(styling...另外值得一提的是pandas 函数都会回传处理后的结果,而不是直接修改原始DataFrame。

    1.8K31

    Pandas实用手册(PART III)

    用SQL的方式合并两个DataFrames 很多时候你会想要将两个DataFrames 依照某个共通的栏位(键值)合并成单一DataFrame 以整合资讯,比方说给定以下两个DataFrames: DataFrame...如果你想将这两个DataFrames合并(merge),可以使用非常方便的merge函数: 没错,merge函数运作方式就像SQL一样,可以让你通过更改how参数来做: left:left outer...join right:right outer join outer: full outer join inner:inner join 注意合并后的DataFrame的最后一列:因为是left join...merge函数强大之处在于能跟SQL一样为我们抽象化如何合并两个DataFrames的运算。...函数相同的结果: 当然,你也可以直接使用pivot_table函数来汇总各组数据: 依照背景不同,每个人会有偏好的pandas 使用方式。

    1.8K20

    Pandas图鉴(三):DataFrames

    Polars[2]是Pandas最近的转世(用Rust编写,因此速度更快,它不再使用NumPy的引擎,但语法却非常相似,所以学习 Pandas 后对学习 Polars 帮助非常大。...DataFrames 数据框架的剖析 Pandas的主要数据结构是一个DataFrame。它捆绑了一个二维数组,并为其行和列加上标签。...mul, div, mod, pow, floordiv 合并DataFrames Pandas有三个函数,concat(concatenate的缩写)、merge和join,它们都在做同样的事情:把几个...如果DataFrames的列不完全匹配(不同的顺序在这里不算),Pandas可以采取列的交集(kind='inner',默认)或插入NaNs来标记缺失的值(kind='outer'): 水平stacking...它将索引和列合并到MultiIndex中: eset_index 如果你想只stack某些列,你可以使用melt: 请注意,熔体以不同的方式排列结果的行。

    44420

    一款可以像操作Excel一样玩Pandas的可视化神器来了!

    Pandas这个库对Python来说太重要啦!...因为它的出现,让Python进行数据分析如虎添翼,作为Python里面最最牛逼的库之一,它在数据处理和数据分析方面,拥有极大的优势,受到数据科学开发者的广大欢迎。...小编最近在逛GitHub的时候,发现了一款神器,一款神器分析Pandas DataFrames的图形化界面,可以帮助我们对数据集进行可视化的处理,非常不错!...它包含了DataFrames的基本属性,实际上代表了DataFrames的两个方法,df.melt(),df.pivot(),以图像化的形式进行了展现。...aggfun: 使用方法 上图中以Sex为行索引,Age为列索引,Fare系统值,操作后的表格展示为: 在上图中,我们可以看到,在最左边增加了df_pivot的DataFrames数据,每操作一次,会增加一个

    1.3K20

    使用Pandas melt()重塑DataFrame

    重塑 DataFrame 是数据科学中一项重要且必不可少的技能。在本文中,我们将探讨 Pandas Melt() 以及如何使用它进行数据处理。...df_wide.melt( id_vars='Country', ) 现在行数为 15,因为 Country 列中的每个值都有 5 个值(3 X 5 = 15)。...有两个问题: 确认、死亡和恢复保存在不同的 CSV 文件中。将它们绘制在一张图中并不简单。 日期显示为列名,它们很难执行逐日计算,例如计算每日新病例、新死亡人数和新康复人数。...,它们都应该输出如下相同的结果: 请注意,列都是从第 4 列开始的日期,并获取确认的日期列表 df.columns [4:] 在合并之前,我们需要使用melt() 将DataFrames 从当前的宽格式逆透视为长格式...Recovered 列的完整表格: 总结 在本文中,我们介绍了 5 个用例和 1 个实际示例,这些示例使用 Pandas 的melt() 方法将 DataFrame 从宽格式重塑为长格式。

    3K11

    Variable和Tensor合并后,PyTorch的代码要怎么改?

    昨日(4 月 25 日),Facebook 推出了 PyTorch 0.4.0 版本,该版本有诸多更新和改变,比如支持 Windows,Variable 和 Tensor 合并等等,详细介绍请查看文章《...和 Numpy-style Tensor 创建函数 编写一些不依赖设备的代码 ▌合并 Tensor 和 Variable 类 新版本中,torch.autograd.Variable 和 torch.Tensor...合并后,调用 y = x.data 仍然具有相似的语义。因此 y 将是一个与 x 共享相同数据的 Tensor,并且 requires_grad = False,它与 x 的计算历史无关。...*tensor 方法不同的是,你也可以通过这种方式(单个 Python 数字在 torch.*tensor 方法中被视为大小)创建零维张量(也称为标量)。...Tensors 和 Modules 的 to 方法可用于将对象轻松移动到不同的设备(而不必根据上下文信息调用 cpu() 或 cuda()) 我们推荐用以下的模式: # at beginning of

    10K40

    Python八种数据导入方法,你掌握了吗?

    数据分析过程中,需要对获取到的数据进行分析,往往第一步就是导入数据。导入数据有很多方式,不同的数据文件需要用到不同的导入方式,相同的文件也会有几种不同的导入方式。下面总结几种常用的文件导入方法。 ?...Flat 文件是一种包含没有相对关系结构的记录的文件。(支持Excel、CSV和Tab分割符文件 ) 具有一种数据类型的文件 用于分隔值的字符串跳过前两行。 在第一列和第三列读取结果数组的类型。...# 要读取的文件的行数 header=None, # 作为列名的行号 sep='\t', # 分隔符使用...python的pickle模块实现了基本的数据序列和反序列化。...六、HDF5 文件 HDF5文件是一种常见的跨平台数据储存文件,可以存储不同类型的图像和数码数据,并且可以在不同类型的机器上传输,同时还有统一处理这种文件格式的函数库。

    3.4K40

    仅需添加一行代码,即可让Pandas加速四倍 | Pandas on Ray

    因此,Modin据说能够使任意大小的Pandas DataFrames拥有和CPU内核数量同步的线性增长。 ? 图源:Unsplash 现在,我们一起来看看具体操作和代码的实例。...如何使用Modin和Pandas实现平行数据处理 在Pandas中,给定DataFrame,目标是尽可能以最快速度来进行数据处理。...之前提到,Pandas只调用一个CPU来进行数据处理。这是一个很大的瓶颈,特别是对体量更大的DataFrames,资源的缺失更加突出。...Modin可以切割DataFrame的横列和纵列,任何形状的DataFrames都能平行处理。 假如拿到的是很有多列但只有几行的DataFrame。...一些只能对列进行切割的库,在这个例子中很难发挥效用,因为列比行多。但是由于Modin从两个维度同时切割,对任何形状的DataFrames来说,这个平行结构效率都非常高。

    5.6K30

    流动性挖矿和质押 两个概念有合并的趋势?

    危险表示危险是相对的。这张表上的危险评价是根据持有加密钱银作为出资的相对危险。加密钱银作为一种出资,危险很高。...另一个需求留意的重要点是,虽然一个渠道或许被评为低危险,但出资者有必要记住,供给的报答越高,危险越高。  换句话说,低危险的渠道能够供给高危险的出资。  ...总结 质押和流动性发掘曾经是两个彻底不同的国际。  但最近一个时期,两者的定义有融合的趋势。 ...加密钱银中有流动性发掘和质押的一席之地,但出资者必定要留意危险,避免高APR的引诱。  PanckaeSwap等渠道通过自己在资金池中的费用份额来证明自己丰盛的收入是合理的。 ...可是价格一旦走弱,就会开始跌落,而且跌落的速度或许会很快,从上面两个事例能够看出。   在通过任何质押或流动性发掘渠道进行出资之前,有必要对质押代币的交易量和流动性进行评价。  流动性是必要的。

    21320

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作

    利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据index...fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充...三、索引、选取和过滤 针对 Series ? 需要注意一点的是,利用索引的切片运算与普通的 Python 切片运算不同,其末端是包含的,既包含最后一个的项。比较: ? 赋值操作: ?...针对 DataFrame 对齐操作会同时发生在行和列上,把2个对象相加会得到一个新的对象,其索引为原来2个对象的索引的并集: ?...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?

    90920
    领券