循环与向量化 复制多维数组 给定任意 n x n x 3 矩阵 A,我们将执行以下操作: 复制代码 A(i, j, 1) = A(i, j, 2) 循环和向量化的使用。...该测试用例旨在测量语言访问连续内存位置的速度,并查看每种语言如何处理循环和向量化。 表 CPA-1.0:在 Xeon 节点上使用循环复制矩阵元素所用的时间。...将两个随机生成的 n x n 矩阵 A 和 B 相乘。...测量执行乘法的时间。这个问题说明了利用每种语言中可用的内置库的重要性。 表 MXM-1.0:在 Xeon 节点上进行矩阵相乘所用的时间。...对于 Julia,循环比向量化代码运行得更快。 在不涉及计算的情况下,使用循环与向量化相比,MATLAB 在性能上似乎没有显著变化。当进行计算时,向量化 MATLAB 代码要比迭代代码更快。
print("For loop:" + str(1000 * (toc - tic)) + "ms") 运行结果见下图: 在上面的代码中,使用两个方法——向量化和非向量化,计算了相同的值,其中向量化版本花费了...非向量化方法:初始化向量 ,然后通过循环依次计算每个元素 向量化方法:通过 python 的 numpy 内置函数,执行 命令 numpy 库有很多向量函数,比如 u=np.log 是按元素计算对数函数...()、 np.abs() 是按元素计算数据的绝对值函数、np.maximum(v, 0) 是按元素计算 中每个元素和和0相比的最大值,v**2 是按元素计算元素 中每个值的平方、 1/v 是按元素计算...希望你尽快熟悉矩阵乘法,因为矩阵乘法的要求中有一条是,两个矩阵相乘,左面矩阵的列数需要等于右面矩阵的行数, 也是 , 也是 ,而 是 ,正好符合 的公式,且保证了矩阵乘法的条件。...翻新后的计算如下: ---- 前五个公式完成了前向和后向传播,后两个公式进行梯度下降更新参数。 最后的最后,终于得到了一个高度向量化的、非常高效的逻辑回归的梯度下降算法,是不是?
将其压缩为两个长度相等的向量,第一个向量为按顺序排列的所有的非稀疏元素,第二个向量为对应位置的非稀疏元素与前面一个非稀疏元素中间的0数量,上述向量压缩完成如下所示: ?...u为非零元素,z为两个非零元素之间0的数量。例如 ? 表示第一个非0元素为1,该元素之前有2个零; ? 表示第二个非0元素为2,该元素之前没有0(原向量中为 ? )。...将每一列的v向量按列号依次连接,z向量按列号依次连接,获得矩阵的v和z向量,为了区分不同列,额外引入u向量,u向量长度为列数加1,表示每一列的v或z向量在矩阵v和z向量中的位置,即第i列的v和z向量在矩阵的...的CSC表示。 EIE映射算法的原理如下图所示,综合考虑输入数据和权值的稀疏性,将矩阵-向量乘法分解为多个向量相乘,当且仅当对应位置上的元素均不为0时才进行计算,因此可以减少很多0之间的运算。 ?...随后输入数据与读出的真实权值依次相乘,相乘的结果与输出缓存中位置为WI的数据累加,过程如下所示: ? 累加完成后,输出缓存每个地址存储的就是对应绝对位置的输出结果,完成矩阵-向量乘法映射。
julia> x = 0x01; typeof(x) UInt8 julia> x *= 2 # Same as x = x * 2 2 julia> typeof(x) Int64 向量化的“点”...例如,[1,2,3] ^ 3未定义,因为没有标准的数学意义来“ [1,2,3] .^ 3立方化” 数组,而是定义为计算元素(或“向量化”)结果[1^3, 2^3, 3^3]。类似地,对于像!...或的一元运算符√,也有一个相应.√的元素将其按元素应用。...而且,像所有向量化的“点调用”一样,这些“点运算符”也在融合。例如,如果你计算2 .* A.^2 .+ sin....= 5 true 在数字代码中,链接比较通常非常方便。链式比较将&&运算符用于标量比较,将&运算符用于元素比较,这使它们可以处理数组。
Numbers」提出)是一种同态加密方案,可以对以下基本操作进行同态评估: 长度为 n 的复数向量的对应元素相加 长度为 n 的复数向量的对应元素相乘 向量中元素的旋转(通过循环移位实现) 向量元素的复共轭...矩阵乘法 我们在上文中已经看到了,元素平方操作是很简单的,所以我们按顺序处理剩下的两个问题。...卷积 让我们回顾一下卷积是如何工作的。首先,取原始输入数组中的一些窗口(本例中为 7*7),窗口中的每个元素跟卷积掩模的元素相乘。然后移动窗口(本例中步长为 3,所以将窗口移动 3 个元素)。...*28 的输入图像的话,要计算 8*8 的卷积窗口) 将每个窗口中的相同位置收集到一个向量中,即对每张图来说,都会有包含 64 个元素的向量,或当批处理大小为 64 时,会得到 64*64 的元素向量...矩阵乘法 接下来看看矩阵乘法是如何实现的。我们利用这样的事实——可以旋转向量中的元素,来重排序乘法索引。特别是,要考虑向量中矩阵元素的行优先排序。
因此,它的目的是删除所有计算非必需的内存转换。 ? 在量化矩阵-矩阵乘法中,8 位整数的乘积通常会被累加至 32 位的中间结果中,随后重新量化以产生 8 位的输出。...这些指令加载、存储或者计算小型的固定大小元素向量,而不是单个标量(scalar)。在矩阵相乘中,充分利用向量指令达到高性能很重要。...在传统的 GEMM 实现中,微内核把 MR 元素重新打包到向量暂存器里的 MR 线路中。在 QNNPACK 实现中,MR 元素在存储中不是连续的,微内核需要把它们加载到不同的向量暂存器中。...QNNPACK 中的默认微内核广泛使用了两种 NEON 特定类型的指令:「长」指令,产生的元素向量是其输入的两倍宽;向量暂存器与另一向量暂存器中的元素相乘。...元素上执行乘法,则无法在乘法之前减去零点(减去后结果的宽度是 9bit),需要预计算 A 的行的总和以在重新量化之前调整累加的 32-bit 结果。
向量运算 假设这些是相同长度的向量,i。接下来的操作主要是按元素进行的。这意味着每个向量中的相应元素被一起操作。...嗯,如前所述,二维的点积主要是将向量彼此相乘。在三维中,重点是按矩阵相乘,然后对这些矩阵中的每个向量执行点积。 上图应该有助于解释这一点。将两个 3D 张量视为矩阵向量可能会有所帮助。...由于点积是通过按元素相乘然后求和来执行的,因此首先发生的事情是每个矩阵与其相应的矩阵相乘。当这种情况发生时,矩阵乘法会导致矩阵中的每个向量与其他向量执行点积。从某种意义上说,它就像一个嵌套的点积。...,并在 3D 张量的矩阵中按元素相乘。...张量乘法将具有与三维和二维中相同的要求。
比如我开始不太清楚矩阵的AxB运算和numpy.dot(A, B)有什么不同,实际运行之后才明白x运算是元素逐一相乘,而numpy.dot则是数学上的矩阵乘法运算。 闲话少说,下面就来逐个分析习题。...列向量的第二轴的大小为1, 直接可以排除1、2、4选项,而且(32, 32, 3)的元素个数为32x32x3,很容易确定答案就是选项3。 ? 这个就是python中的广播机制。...所以实际上a和b是不相容的矩阵,无法按元素进行乘法运算。...a*b做的是按元素进行乘法运算,如果两个矩阵shape不同,就需要判断能否应用广播机制,本题中b的shape为(3, 1),可以broadcasting后shape为(3, 3),所以答案是选项1。...最近更新文章: [卷积神经网络]课程:The basics of ConvNets习题解析 使用Tensorflow构建属于自己的图片分类器 Python中的向量化编程 有了TensorFlow.js,
将公式分成两部分:q=x+y和f=qz。在前面已经介绍过如何对这分开的两个公式进行计算,因为f是q和z相乘,所以: ? 又因为q是x加y,所以: ? 然而,并不需要关心中间量q的梯度,因为 ?...相反,函数f关于x,y,z的梯度才是需要关注的。链式法则指出将这些梯度表达式链接起来的正确方式是相乘,比如 ? 。...用向量化操作计算梯度 上述内容考虑的都是单个变量情况,但是所有概念都适用于矩阵和向量操作。然而,在操作的时候要注意关注维度和转置操作。...矩阵相乘的梯度:可能最有技巧的操作是矩阵相乘(也适用于矩阵和向量,向量和向量相乘)的乘法操作。...使用小而具体的例子:有些读者可能觉得向量化操作的梯度计算比较困难,建议是写出一个很小很明确的向量化例子,在纸上演算梯度,然后对其一般化,得到一个高效的向量化操作形式。
这两个东西都是列向量。 sigmoid 函数用 σ(x)\sigma(x) 表示,图像是 S 型的,值域是 (0,1)(0,1),正好符合概率的要求。...向量化 我的习惯是,将 x(i)x^{(i)} 按行堆叠变成 XX,也就是行是样本,列是特征,和咱们能够获得的绝大多数数据集一致。...我们已经知道 dJdθ\frac{dJ}{d\theta} 是两个导数相乘,并且 dJdZ\frac{dJ}{dZ} 是n_data x 1的矩阵,dZdθ\frac{dZ}{d\theta} 是n_data...根据矩阵乘法,它只能是 XT(A−Y)X^T(A - Y)。 注: 严格来讲,向量化的导数应该称为梯度。这个笔记中不区分这两个术语。...代码 向量化的公式很容易用 NumPy 代码来表示。
接下来就是对在第0项添加X0的式子进行向量化的处理,其实前面实现梯度下降的时候已经实现了部分向量化,在求梯度的式子中每一个元素对应的式子看作是两个向量对应的点乘,在代码中使用"dot"的来实现。...此时由于梯度中每一个元素都是点乘一个向量,那么将这些向量合在一起组成一个矩阵,就将上面求解梯度的式子转换成了矩阵的乘法,具体组合方式如下图所示: ? 接下来先将下图中右半部分的式子进行标号: ?...通常情况下向量会被表示成列向量的形式,但是如果两个矩阵能够相乘,需要满足第一个矩阵的列数等于第二个矩阵的行数,很明显如果"式子1"为列向量的话不能够进行矩阵乘法,因此如果进行矩阵乘法运算需要将"式子1"...至此我们将求梯度的过程转换为向量化的方式,其实就是通过矩阵乘法计算梯度的"式子4": ? 接下来只需要在我们自己封装的LinearRegression类中将计算梯度的函数进行相应的修改即可。 ? ?...接下来在jupyter中调用使用向量化方式计算梯度的梯度下降法: ? ? ? ? ? ? ?
向量有两种基本运算:即向量加法和向量数量乘法 向量的加法 如上所示,描述了两个向量相加,它的计算规则如下: 相加的两个向量其维度必须相等 把向量中的分量(即向量中的每个数)分别想加,最终构成的向量就是其相加后的结果...向量的数量乘法 用一个向量和一个标量进行乘法运算,就称之为向量的数量乘法。 如上所示,描述了向量和标量相乘,它的计算规则如下: 把向量中的分量与分别与标量相乘,最终构成的向量就是其相乘后的结果。...如上所示,描述了向量与向量相乘,它的计算规则如下: 相乘的两个向量,其维度必须相等 把两个向量的分量分别相乘,将其结果相加,最终得到的标量就是其相乘后的结果 实现向量的运算 上面我们讲解了向量的两个基本运算...: 将每个向量中的元素互相进行乘法运算,将得到的结果相加 for (let i = 0; i 乘法 矩阵与标量之间的乘法运算就称为矩阵数量乘法。 上述公式描述了矩阵与标量相乘的运算过程,其运算方法如下: 将矩阵中的每个元素和标量相乘,其结果构建成一个新的矩阵就是矩阵数量乘法的结果。
具体分析: 常规实现:在量化矩阵-矩阵乘法中,8位整数的乘积通常会被累加至 32 位的中间结果中,随后重新量化以产生 8 位的输出。...b 打包对微内核效率的影响与当前所有移动处理器支持的 SIMD 向量指令的使用密切相关。这些指令加载、存储或者计算小型的固定大小元素向量,而不是单个标量(scalar)。...在矩阵相乘中,充分利用向量指令达到高性能很重要。在传统的 GEMM 实现中,微内核把 MR 元素重新打包到向量暂存器里的 MR 线路中。...优化实现: a 当面板适配一级缓存时,不会存在缓存关联性及微内核效率受限的问题。 b 在 QNNPACK 实现中,MR 元素在存储中不是连续的,微内核需要把它们加载到不同的向量暂存器中。...微内核加载 A 的多个行,乘以 B 的满列,结果相加,然后完成再量化并记下量化和。A 和 B 的元素被量化为 8 位整数,但乘积结果相加到 32 位。
此图只是为了封面而已,并非python女友 接下来要给大家介绍的系列中包含了Python在量化金融中运用最广泛的几个Library: numpy scipy pandas matplotlib ###...,在处理中Python会自动将整数转换为浮点数(因为数组是同质的),并且,两个二维数组相加要求各维度大小相同。...矩阵对象和数组的主要有两点差别:一是矩阵是二维的,而数组的可以是任意正整数维;二是矩阵的'*'操作符进行的是矩阵乘法,乘号左侧的矩阵列和乘号右侧的矩阵行要相等,而在数组中'*'操作符进行的是每一元素的对应相乘...下面这个例子是将第一列大于5的元素(10和15)对应的第三列元素(12和17)取出来: 可使用where函数查找特定值在数组中的位置: 六、数组操作 还是拿矩阵(或二维数组)作为例子,首先来看矩阵转置:...矩阵求逆: 求特征值和特征向量: 按列拼接两个向量成一个矩阵: 在循环处理某些数据得到结果后,将结果拼接成一个矩阵是十分有用的,可以通过vstack和hstack完成: 一个水平合一起,一个垂直合一起
当两个矩阵形状一样时可以将两个矩阵相加,加法过程是对应位置的元素进行相加。 向量和矩阵相加时,例如向量b和矩阵A相加, ? ,表示向量b和矩阵A的每一行相加。...标量和矩阵相加或者相乘时,只需将其与矩阵的每个元素相加或者相乘。...乘法运算 矩阵乘法是矩阵运算中总最重要的操作之一,当矩阵A与矩阵B相乘得到C时,矩阵乘法需要满足矩阵A的列数必须等于矩阵B的行数,若矩阵A为m*n,则矩阵B的形状需要是n*p,则C的形状为m*p ?...两个元素标准乘积不是指两个矩阵中对应元素的乘积,当两个相同位数的向量x和y相乘可看作点积。...向量范数:描述向量在空间中的大小。 在二维的欧氏几何空间 R中定义欧氏范数,在该矢量空间中,元素被画成一个从原点出发的带有箭头的有向线段,每一个矢量的有向线段的长度即为该矢量的欧氏范数。
向量 A中的第一个值与向量 B 中的第一个值相加,然后第二个值与第二个值配对,如此循环。这意味着,两个向量必须要有相同的维度才能进行元素操作。...向量乘法 向量乘法有两种:点积(Dot product) 和 Hadamard乘积(Hadamard product)。 点积 两个向量的点积是一个标量。...原因是,该向量场背后的向量存储着如2x 或x² 这样的元素,而不是 -2 和 5这样的标量值。对于图中的每个点,我们将 x 轴的值带入 2x 或 x² 中,并绘制一个从开始点指向新位置的箭头。...矩阵转置提供了一种方法来“旋转”其中的一个矩阵,使其满足乘法操作的要求。转置一个矩阵分两个步骤: 1. 将矩阵顺时针旋转 90° 2....步骤 矩阵的乘法依赖于点积与各个行列元素的组合。 以下图为例(取自 Khan学院的线性代数课程),矩阵 C中的每个元素都是矩阵 A 中的行与矩阵B中的列的点积。
主要的结论是,有了Julia,您不再需要向量化来提高性能,良好地使用循环可能会提供最好的性能。 在这篇文章中,我将添加Python对比。...该算法遍历输入向量的元素,直到找到要搜索的值(成功搜索)或到达向量的末尾(不成功搜索)为止。目的是判断向量中是否有给定的整数。...搜索成功的可能性约为50%,因此算法将扫描整个向量的一半时间得出搜索不成功的结论。在其余情况下,算法应(平均)需要进行(n + 1)/ 2次评估才能找到元素,其中n为向量的长度。...但是在R中,随着控制的增加,性能会下降。使用向量化操作(如vec_search)比遍历元素直到找到匹配的元素要快一个数量级。尽管向量化需要更多的内存和(冗余的)操作,但它还是有回报的。...向量化的性能相当不错,大约是4x C的CPU时间,但在向量化操作上,也减少了大约NumPy的两倍CPU时间。并且对于代码的自由度也非常的好,因为你可以在Julia中编写几乎任何算法!
LLM.int8 () 中的混合精度量化是通过两个混合精度分解实现的: 因为矩阵乘法包含一组行和列向量之间的独立内积,所以可以对每个内积进行独立量化。...对每个嵌入层都量化的代价非常昂贵,相比之下,PEG 量化将激活张量沿嵌入维度分成几个大小均匀的组,其中同一组中的元素共享量化参数。...(1) 对矩阵中的列进行排列可以在剪枝过程中提供更多可能,以保持参数的数量或满足特殊限制,如 N:M 稀疏性。只要两个矩阵对应的轴按相同的顺序排列,矩阵乘法的结果就不会改变。...⊙是元素对应位置相乘。...为了确保每个细分都可以访问嵌入的任何部分,Scaling Transformer 引入了一个乘法层(即,一个乘法层将来自多个神经网络层的输入按元素相乘),它可以表示任意排列,但包含的参数少于全连接层。
在Julia中,函数是一个将参数值元组映射到返回值的对象。从函数可以更改并受程序全局状态影响的意义上讲,Julia函数不是纯数学函数。在Julia中定义函数的基本语法为: ?...也可以按任何顺序传递大量参数的任何子集。...类似地,do a,b将创建一个包含两个参数的匿名函数,而平原do将声明其后是形式为的匿名函数() -> ...。 这些参数的初始化方式取决于“外部”功能。...用于向量化功能的点语法 在技术计算语言中,通常会使用功能的“向量化”版本,该版本仅将给定功能f(x)应用于数组的每个元素A以通过产生新的数组f(A)。...这种语法对于数据处理很方便,但是在其他语言中,性能通常也需要向量化:如果循环很慢,则函数的“向量化”版本可以调用用低级语言编写的快速库代码。
领取专属 10元无门槛券
手把手带您无忧上云