首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas中的窗口处理函数

    滑动窗口的处理方式在实际的数据分析中比较常用,在生物信息中,很多的算法也是通过滑动窗口来实现的,比如经典的质控软件Trimmomatic, 从序列5'端的第一个碱基开始,计算每个滑动窗口内的碱基质量平均值...在pandas中,提供了一系列按照窗口来处理序列的函数。....count() 0 1.0 1 2.0 2 2.0 3 1.0 4 1.0 dtype: float64 window参数指定窗口的大小,在rolling系列函数中,窗口的计算规则并不是常规的向后延伸...以上述代码为例,count函数用于计算每个窗口内非NaN值的个数,对于第一个元素1,再往前就是下标-1了,序列中不存在这个元素,所以该窗口内的有效数值就是1。...对于expanding系列函数而言,rolling对应的函数expanding也都有,部分函数示例如下 >>> s.expanding(min_periods=2).mean() 0 NaN 1 1.5

    2K10

    pandas中的loc和iloc_pandas loc函数

    大家好,又见面了,我是你们的朋友全栈君。...目录 pandas中索引的使用 .loc 的使用 .iloc的使用 .ix的使用 ---- pandas中索引的使用 定义一个pandas的DataFrame对像 import pandas as pd....loc[],中括号里面是先行后列,以逗号分割,行和列分别是行标签和列标签,比如我要得到数字5,那么就就是: data.loc["b","B"] 因为行标签为b,列标签为B,同理,那么4就是data...5,右下角的值是9,那么这个矩形区域的值就是这两个坐标之间,也就是对应5的行标签到9的行标签,5的列标签到9的列标签,行列标签之间用逗号隔开,行标签与行标签之间,列标签与列标签之间用冒号隔开,记住,.loc...那么,我们会想,那我们只知道要第几行,第几列的数据呢,这该怎么办,刚好,.iloc就是干这个事的 .iloc的使用 .iloc[]与loc一样,中括号里面也是先行后列,行列标签用逗号分割,与loc不同的之处是

    1.2K10

    模型量化与量化在LLM中的应用 | 得物技术

    目前剪枝在LLM中的应用较少,如以下基于Activation-aware的剪枝工作[1],主要是基于权重本身的的绝对值大小和输入张量的绝对值大小做非结构化剪枝,使权重张量本身稀疏化,而模型的精度损失也并不能达到工程化的要求...如以下对Llama2-7B的SmoothQuant应用结果显示其perplexity非常糟糕,难以在实际中应用。...量化过程 以矩阵乘法的基本单元操作为例,基于 weight-only量化前后的乘积的均方差,可以写出如下优化函数, W 是在Transformer 中的Linear层权重,X表示其对应的输入。...具体量化过程如下: 计算Hessian(上述优化函数对于W_hat的Hessian,而非反向传播中的Hessian),加入扰动项: act order sort(desc_act,值范围相近的column...相比于原本的W16A16并没有太多效率的提升,而且推理中还加入了quant/dequant过程;而随着weight-only成为LLM量化的主流且应用越来越多,有很多开源的工作基于W4A16高效算子的编写为量化算法的推理提速赋能

    98610

    pandas一个优雅的高级应用函数!

    pandas中4个高级应用函数 applymap:元素级 apply:行列级 transform:行列级 还有另外一个管道函数pipe(),是表级的应用函数。...以下是内容展示,完整数据、和代码可戳《pandas进阶宝典V1.1.6》进行了解。 pipe函数介绍 函数: pipe函数可应用在series和dataframe两个数据结构上。...用于处理数据的函数,可以是内置函数、库函数、自定义函数或匿名函数 *args:指定传递给函数位置参数 **kwargs:指定传递给函数的关键字 pipe函数应用 一、单个函数 df.pipe(np.exp...callable:指定在pipe()中调用的函数 data_keyword:指定将dataframe传给函数中的哪一个参数 def spcl(num, df): return df.add(num...) df.pipe((spcl,'df'), 2) 以上pipe()中用(spcl,'df')代替了常规时的函数spcl,清楚地指明了函数中的df参数是接受dataframe数据的参数,这样就不会报错

    23830

    盘点一个Pandas中explode()爆炸函数应用实际案例

    前言 前几天在学习【麦叔】Python自动化书本中案例的时候,偶然想对数据分列多一些操作,但是遇到了问题,如下图所示。 上图这个是原始数据,但是现在想要下图这样的效果,怎么破呢?...二、解决方案 针对该问题,其实有两个方法,第一个是【麦叔】书中给出的openpyxl库进行拆解,如下图所示: 第二个是使用pandas中的explode()函数,这里直接给出【1px】大佬答案,如下图所示...: 其实关键点就是pandas中的爆炸函数explode(),早在之前我看到过有人用这个,只是一直不知道怎么用,今天在这里算是涨知识了。...import pandas as pd df = pd.read_excel('keywords.xlsx') # ['序号', '年份', '来源出版物名称', '索引关键字' df.columns...本文基于实际过程中遇到的Excel数据拓展分列的问题,使用pandas中的explode()函数顺利完成解答,一个小题目,帮助自己和大家加深对该函数的认识。

    75320

    pandas中的字符串处理函数

    在pandas中,通过DataFrame来存储文件中的内容,其中最常见的数据类型就是字符串了。针对字符串,pandas提供了一系列的函数,来提高操作效率。...这些函数可以方便的操作字符串类型的Series对象,对数据框中的某一列进行操作,这种向量化的操作提高了处理效率。pandas中的字符串处理函数以str开头,常用的有以下几种 1....去除空白 和内置的strip系列函数相同,pandas也提供了一系列的去除空白函数,用法如下 >>> df = pd.DataFrame([' A', ' B', 'C ', 'D ']) >>> df...拼接 通过str.cat函数来实现,用法如下 >>> import pandas as pd >>> df = pd.DataFrame(['A', 'B', 'C', 'D']) >>> df...,完整的字符串处理函数请查看官方的API文档。

    2.8K30

    对比python字符串函数,轻松学习pandas的 str 矢量化字符串函数

    我们不仅要学会怎么处理单个字符串,这个就需要学习“python字符串函数”,我们还要学会怎么处理二维表格中每一列每一格的字符串,这个就需要学习“pandas的str矢量化字符串函数”。...2.常用的python字符串函数 字符串中,空白符也算是真实存在的一个字符。 1)python字符串函数大全 ? 2)函数讲解 ① find()函数 功能 :检测字符串是否包含指定字符。...③ count()函数 功能 : 统计字符串中,某指定字符在指定索引范围内,出现的次数。 索引范围 :左闭右开区间。 注意 :如果不指定索引范围,表示在整个字符串中,搜索指定字符出现的次数。 ?...3.常用的str矢量化字符串函数 str矢量化操作:指的是循环迭代数组里面的某个元素,来完成某个操作。 1)str矢量化字符串函数大全 ?...2)构造一个DataFrame,用于测试函数 import pandas as pd df ={'姓名':[' 黄同学','黄至尊','黄老邪 ','陈大美','孙尚香'], '英文名':['

    1.3K10

    总结100个Pandas中序列的实用函数

    在分享《Pandas模块,我觉得掌握这些就够用了!》后有很多读者朋友给我私信,希望分享一篇关于Pandas模块中序列的各种常有函数的使用。...❆ 统计汇总函数 数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。 ? ?...❆ 数据清洗函数 同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。 ?...(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill()) ?...❆ 数据筛选 数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。 ?

    78130

    总结100个Pandas中序列的实用函数

    经过一段时间的整理,本期将分享我认为比较常规的100个实用函数,这些函数大致可以分为六类,分别是统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。...❆ 统计汇总函数 数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。 ? ?...❆ 数据清洗函数 同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。 ?...(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill()) ?...❆ 数据筛选 数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。 ?

    47240

    总结100个Pandas中序列的实用函数

    本期将分享我认为比较常规的100个实用函数,这些函数大致可以分为六类,分别是统计汇总函数、数据清洗函数、数据筛选、绘图与元素级运算函数、时间序列函数和其他函数。...❆ 统计汇总函数 数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。 ? ?...❆ 数据清洗函数 同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。 ?...(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill()) ?...❆ 数据筛选 数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。 ?

    63422

    总结100个Pandas中序列的实用函数

    在分享《Pandas模块,我觉得掌握这些就够用了!》后有很多读者朋友给我私信,希望分享一篇关于Pandas模块中序列的各种常有函数的使用。...❆ 统计汇总函数 数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。 ? ?...❆ 数据清洗函数 同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。 ?...(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill()) ?...❆ 数据筛选 数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。 ?

    62310

    详解python中的pandas.read_csv()函数

    前言 在Python的数据科学和分析领域,Pandas库是处理和分析数据的强大工具。 pandas.read_csv()函数是Pandas库中用于读取CSV(逗号分隔值)文件的函数之一。...本文中洲洲将进行详细介绍pandas.read_csv()函数的使用方法。 一、Pandas库简介 pandas是一个Python包,并且它提供快速,灵活和富有表现力的数据结构。...自动和显式的数据处理:Pandas能够自动处理大量数据,同时允许用户显式地控制数据处理的细节。 时间序列分析:Pandas提供了对时间序列数据的丰富支持,包括时间戳的自动处理和时间序列窗口函数。...数据合并:使用concat、merge等函数合并多个数据集。 数据分组:使用groupby进行数据分组并应用聚合函数。 数据重塑:使用pivot_table、melt等函数重塑数据。...df = pd.read_csv('data.csv', usecols=['Name', 'Occupation']) 3.3 处理缺失的数据 CSV文件中可能包含缺失数据,pandas.read_csv

    47610

    Pandas中第二好用的函数 | 优雅的apply

    这是Python数据分析实战基础的第四篇内容,也是基础系列的最后一篇,接下来就进入实战系列了。本文主要讲的是Pandas中第二好用的函数——apply。 为什么说第二好用呢?...我们单独用一篇来为apply树碑立传,原因有二,一是因为apply函数极其灵活高效,甚至是重新定义了pandas的灵活,一旦熟练运用,在数据清洗和分析界可谓是“屠龙在手,天下我有”;二是apply概念相对晦涩...其中,揉面的过程就是groupby分组,而DIY调馅做包子就是apply自定义函数和应用的过程。...结合我们的目标,揉面是按省份进行分组,得到每个省各个城市和对应销售额的面团;DIY包子是在每个面团中取其第三名的城市和销售额字段。 第一步分组非常简单,按省份分组即可。...下面把我们针对直辖市的判断和非直辖市的筛选逻辑整合成一个函数: ? 这个函数,将会在apply的带领下,对每一个分组进行批量化DIY,抽取出排名第3的城市和销售额,应用起来很简单: ?

    1.1K31

    总结100个Pandas中序列的实用函数

    因为每个列表都在分享《Pandas模块,我觉得掌握这些就够用了!》后有很多读者朋友给我私信,希望分享一篇关于Pandas模块中序列的各种常有函数的使用。...统计汇总函数 数据分析过程中,必然要做一些数据的统计汇总工作,那么对于这一块的数据运算有哪些可用的函数可以帮助到我们呢?具体看如下几张表。 ? ?...❆ 数据清洗函数 同样,数据清洗工作也是必不可少的工作,在如下表格中罗列了常有的数据清洗的函数。 ?...(x.fillna(value = x.mean())) # 前向填充缺失值 print(x.ffill()) ?...❆ 数据筛选 数据分析中如需对变量中的数值做子集筛选时,可以巧妙的使用下表中的几个函数,其中部分函数既可以使用在序列身上,也基本可以使用在数据框对象中。 ?

    74120

    Pandas中的get_dummy()函数案例实战分享

    一、前言 前几天在Python最强王者交流群【WYM】问了一个Pandas处理的问题,提问截图如下: 数据截图如下: 可能一开始理解起来还是有点困难的,需要多读一两遍才可以体会到那个意思。...二、实现过程 这里【郑煜哲·Xiaopang】给了一个思路,如下所示: 代码如下: import pandas as pd def my_func(x): res = pd.Series(0...\]') df['tblTags'].str.get_dummies(sep=', ') 顺利地解决了粉丝的问题。 不过他自己的原始数据需要再处理下,不然的话,会报错。...如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1和0)。pandas有一个get_dummies()函数可以实现该功能。...这篇文章主要盘点了一个Python基础的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    13610
    领券