首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Domain Adaptation for Structured Output viaDiscriminative Patch Representations

预测语义分割等结构化输出依赖于昂贵的每像素注释来学习卷积神经网络等监督模型。然而,在没有模型调整注释的情况下,在一个数据域上训练的模型可能无法很好地推广到其他域。为了避免注释的劳动密集型过程,我们开发了一种域自适应方法,将源数据自适应到未标记的目标域。我们建议通过构建聚类空间来发现逐片输出分布的多种模式,从而学习源域中补丁的判别特征表示。以这种表示为指导,我们使用对抗性学习方案来推动聚类空间中目标补丁的特征表示更接近源补丁的分布。此外,我们还表明,我们的框架是对现有领域自适应技术的补充,并在语义分割方面实现了一致的改进。广泛的消融和结果在各种设置的众多基准数据集上进行了演示,例如合成到真实和跨城市场景。

04

学习泛化能力:用于领域泛化的元学习

域偏移(Domain shift)是指在一个源域中训练的模型在应用于具有不同统计量的目标域时表现不佳的问题。领域泛化(Domain Generalization, DG)技术试图通过产生模型来缓解这一问题,通过设计将模型很好地推广到新的测试领域。提出了一种新的域泛化元学习方法。我们没有像以前的DG工作那样设计一个对域移位具有鲁棒性的特定模型,而是提出了DG的模型不可知论训练过程。我们的算法通过在每个小批中合成虚拟测试域来模拟训练过程中的训练/测试域偏移。元优化目标要求模型改进训练域性能的步骤也应该改进测试域性能。这一元学习过程训练模型具有良好的泛化能力的新领域。我们在最近的跨域图像分类基准上评估了我们的方法和达到的最先进的结果,并在两个经典的增强学习任务上展示了它的潜力。

01

遗忘:深度学习中的双刃剑?最新《深度学习中的遗忘》的研究综述

「遗忘(Forgetting)是指之前获得的信息或知识的丢失或退化」。现有的关于遗忘的综述主要集中在持续学习上,然而,「遗忘也是深度学习的其他研究领域中普遍观察到的现象」。例如,遗忘在生成模型中由于生成器偏移而表现出来,在联邦学习中由于客户端之间数据分布异构而表现出来。解决遗忘包括几个挑战:平衡旧任务知识的保留与新任务的快速学习、管理具有冲突目标的任务干扰、以及防止隐私泄漏等。此外,大多数现有的关于持续学习的综述都默认遗忘总是有害的。相反,作者认为「遗忘是一把双刃剑,在某些情况下(如隐私保护场景)可能是有益的和可取的」。通过在更广泛的背景下探索遗忘,本综述旨在提供对这一现象的更细微的理解,并强调其潜在的优势。通过这项全面的综述,作者希望通过借鉴来自各种处理遗忘的领域的思想和方法来发现潜在的解决方案。通过超越传统的遗忘边界的分析,本综述希望在未来的工作中鼓励开发新的策略来减轻、利用甚至接受在实际应用中的遗忘。

02

J. Chem. Inf. Model. | ChatGPT 生成的内容与化学领域数据相似性指数

近年来,自然语言处理和机器学习的进步导致了像ChatGPT这样功能强大的语言模型的发展。这些基于GPT-3.5架构的模型旨在理解和生成类似人类的文本响应。尽管这些模型已广泛用于各种应用,但它们在化学领域及其子领域的潜力仍未得到充分探索。通过利用该领域中丰富的知识和数据,ChatGPT有潜力帮助研究人员、学生和专业人员获取相关信息、解决问题并促进科学交流。ChatGPT有可能彻底改变我们在化学及其子学科领域中获取和互动科学知识的方式。生成的内容可以涵盖有机化学、无机化学、分析化学、物理化学、生物化学等广泛的主题领域。已经有一些关于化学和ChatGPT的论文发表,例如药物发现、教学学习、计算化学等。ChatGPT可以用于快速、易于访问地提供有关化学各个方面的信息,可能成为研究人员、学生和专业人员的宝贵工具。此外,ChatGPT可以用更简单的语言解释化学概念,帮助学生更好地理解复杂的主题,可能有助于解决问题。ChatGPT适用于多样的数据集,包括科学交流,从而可以使用与化学相关的技术术语和行话,有助于生成与特定查询相关的上下文相关响应。因此,评估ChatGPT在化学领域生成的内容的准确性和可靠性需要适当的评估方法,以衡量生成内容的质量,如检查其相似性。因此,作者研究的目标是调查ChatGPT在生成与化学相关的内容方面的能力,并检查相似性指数以评估生成响应的质量和准确性。

02

One-Shot Unsupervised Cross Domain Translation

给出一个来自领域A的单一图像x和一组来自领域B的图像,我们的任务是生成x在B中的类似物。我们认为,这项任务可能是一项关键的人工智能能力,它强调了认知代理在这个世界上的行动能力,并提出了经验证据,表明现有的无监督领域翻译方法在这项任务上失败。我们的方法遵循一个两步过程。首先,为领域B训练一个变异自动编码器。然后,给定新的样本x,我们通过调整接近图像的层来创建A域的变异自动编码器,以便直接适应x,而只间接适应其他层。我们的实验表明,当对一个样本x进行训练时,新方法和现有的领域转移方法一样好,当这些方法享受来自领域A的大量训练样本时。我们的代码可在https://github.com/sagiebenaim/OneShotTranslation 公开。

02

Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

最近已作出大量努力,提出光学遥感图像中的各种目标检测方法。然而,目前对光学遥感图像中目标检测的数据集调查和基于深度学习的方法还不够完善。此外,现有的数据集大多存在一些不足之处,如图像和目标类别数量较少,图像多样性和变异性不足。这些局限性极大地影响了基于深度学习的目标检测方法的发展。本文综述了近年来计算机视觉和地球观测领域基于深度学习的目标检测研究进展。然后,我们提出了一个大规模、公开可用的光学遥感图像目标检测基准,我们将其命名为DIOR。数据集包含23463张图像和190288个实例,覆盖20个目标类。建议的DIOR数据集1)在目标类别、目标实例数量和总图像数量上都是大规模的;2)具有大范围的对象尺寸变化,不仅在空间分辨率方面,而且在跨目标的类间和类内尺寸变化方面;3)由于成像条件、天气、季节、成像质量的不同,成像结果差异较大;4)具有较高的类间相似性和类内多样性。提出的基准可以帮助研究人员开发和验证他们的数据驱动方法。最后,我们评估了DIOR数据集中的几种最先进的方法,为未来的研究奠定了基础。

05

EXEMPLAR GUIDED UNSUPERVISED IMAGE-TOIMAGETRANSLATION WITH SEMANTIC CONSISTENCY

由于深度学习的进步,图像到图像的翻译最近受到了极大的关注。大多数工作都集中在以无监督的方式学习一对一映射或以有监督的方式进行多对多映射。然而,更实用的设置是以无监督的方式进行多对多映射,由于缺乏监督以及复杂的域内和跨域变化,这更难实现。为了缓解这些问题,我们提出了示例引导和语义一致的图像到图像翻译(EGSC-IT)网络,该网络对目标域中的示例图像的翻译过程进行调节。我们假设图像由跨域共享的内容组件和每个域特定的风格组件组成。在目标域示例的指导下,我们将自适应实例规范化应用于共享内容组件,这使我们能够将目标域的样式信息传输到源域。为了避免翻译过程中由于大的内部和跨领域变化而自然出现的语义不一致,我们引入了特征掩码的概念,该概念在不需要使用任何语义标签的情况下提供粗略的语义指导。在各种数据集上的实验结果表明,EGSC-IT不仅将源图像转换为目标域中的不同实例,而且在转换过程中保持了语义的一致性。

01

资源 | 谷歌发布人类动作识别数据集AVA,精确标注多人动作

选自Google Research 机器之心编译 参与:路雪 视频人类动作识别是计算机视觉领域中的一个基础问题,但也具备较大的挑战性。现有的数据集不包含多人不同动作的复杂场景标注数据,今日谷歌发布了精确标注多人动作的数据集——AVA,希望能够帮助开发人类动作识别系统。 教机器理解视频中的人类动作是计算机视觉领域中的一个基础研究问题,对个人视频搜索和发现、运动分析和手势交流等应用十分必要。尽管近几年图像分类和检索领域实现了很大突破,但是识别视频中的人类动作仍然是一个巨大挑战。原因在于动作本质上没有物体那么明

07

Texture Underfitting for Domain Adaptation

全面的语义分割是鲁棒场景理解的关键组成部分之一,也是实现自动驾驶的要求。在大规模数据集的驱动下,卷积神经网络在这项任务上表现出了令人印象深刻的结果。然而,推广到各种场景和条件的分割算法需要极其多样化的数据集,这使得劳动密集型的数据采集和标记过程过于昂贵。在分割图之间结构相似的假设下,领域自适应有望通过将知识从现有的、潜在的模拟数据集转移到不存在监督的新环境来解决这一挑战。虽然这种方法的性能取决于神经网络学习对场景结构的高级理解这一概念,但最近的工作表明,神经网络倾向于过度适应纹理,而不是学习结构和形状信息。 考虑到语义分割的基本思想,我们使用随机图像风格化来增强训练数据集,并提出了一种有助于纹理适配的训练程序,以提高领域自适应的性能。在使用有监督和无监督方法进行合成到实域自适应任务的实验中,我们表明我们的方法优于传统的训练方法。

02

时间序列图神经网络最新综述(GNN4TS)

时间序列是用于记录动态系统测量结果的主要数据类型,并由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于发掘可用数据中隐含的信息丰富性至关重要。随着图神经网络(GNNs)的最近进步,基于GNN的时间序列分析方法的研究有所增加。这些方法可以明确地模拟时间和变量之间的关系,这是传统的和其他基于深度神经网络的方法难以做到的。在这次综述中,我们对图神经网络进行了全面的时间序列分析(GNN4TS),包括四个基本维度:预测、分类、异常检测和插补。我们的目标是指导设计师和实践者理解,构建应用,并推进GNN4TS的研究。首先,我们提供了一个全面的任务导向的GNN4TS分类。然后,我们介绍并讨论代表性的研究工作,最后讨论GNN4TS的主流应用。关于潜在的未来研究方向的全面讨论完整了这次综述。这次研查是首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络用于时间序列分析的基础、实际应用和机会。推荐阅读:深度时间序列的综述

04

GNN如何建模时间序列?

时间序列是用于记录动态系统测量结果的主要数据类型,并由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于发掘可用数据中隐含的信息丰富性至关重要。随着图神经网络(GNNs)的最近进步,基于GNN的时间序列分析方法的研究有所增加。这些方法可以明确地模拟时间和变量之间的关系,这是传统的和其他基于深度神经网络的方法难以做到的。在这次综述中,我们对图神经网络进行了全面的时间序列分析(GNN4TS),包括四个基本维度:预测、分类、异常检测和插补。我们的目标是指导设计师和实践者理解,构建应用,并推进GNN4TS的研究。首先,我们提供了一个全面的任务导向的GNN4TS分类。然后,我们介绍并讨论代表性的研究工作,最后讨论GNN4TS的主流应用。关于潜在的未来研究方向的全面讨论完整了这次综述。这次研查是首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络用于时间序列分析的基础、实际应用和机会。

05
领券