首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

细胞骨架与自噬之间的关系

肌动蛋白的细胞骨架动力学通过促进囊泡货物的生物发生和运输,在大多数形式的细胞内运输中起着至关重要的作用。越来越多的证据表明,肌动蛋白动力学和膜细胞骨架支架在巨噬自噬中也起着重要作用,巨噬细胞是在专门的囊泡(称为自噬体)中分离细胞废物以回收和降解的过程。因此,支化肌动蛋白聚合对于自吞噬体从内质网(ER)膜的生物发生是必需的。然后,基于肌动蛋白的转运体将来自细胞内部不同膜细胞器的预选货物和碎片用于生长的吞噬细胞。然后,成熟的自噬体通过未知机制从ER膜上脱离,并被运输并与溶酶体融合,内体和多囊泡体通过涉及基于肌动蛋白和微管的运动性,细胞骨架膜支架和信号蛋白的机制。在这篇综述中,作者重点介绍了最近在理解细胞骨架在自噬中的不同作用方面取得的巨大进展。

02

科学瞎想系列之一三二 电机绕组(9)

上期讲了主极磁场分布不是正弦时产生的磁势高次谐波。本期我们讲另一种谐波电势——齿谐波电势。所谓齿谐波电势就是谐波的次数与每极槽数有着特定关系的谐波电势,根据上期讲的“种瓜得瓜种豆得豆”理论,其实齿谐波电势也是由于主极磁势中存在着齿谐波磁势引起的,只不过这种次数的谐波电势被齿槽给“调制放大”了,为了说清楚齿谐波电势被“调制放大”的机理,我们还是从任意υ次谐波电势的幅值讲起。 1 任意υ次谐波电势的大小 1.1 任意υ次谐波磁势产生的谐波磁场 上一期的(11)式讲到,对于转子主极任意一个υ次谐波磁势所产生的磁场包括三种,现将上期的第(11)式的推导结果重新列出如下: Bυ=Bυ0•sin(υ•ωt-υ•p•α)+∑Bυk•sin[υ•ωt-(k•Z+υ•p)α]+∑Bυk•sin[υ•ωt+(k•Z-υ•p)α] ⑴ 式中:Z为定子槽数;p为极对数;ω为转子旋转电角速度;k=1,2,3…; Bυ0=Fυ•λ0 ⑵ Bυk=(1/2)•Fυ•λk ⑶ 上述⑴式表明,任意一个υ次谐波磁势都会在气隙中产生三种谐波磁场:一是极对数为υ•p、转向与转子相同(顺转)、转速为同步转速的基本谐波磁场,(⑴式中第一项);二是一系列极对数为k•Z+υ•p(k=1,2,3…),转速为n1•υ•p/(k•Z+υ•p)的顺转谐波磁场(⑴式中第二项和式);三是一系列极对数为k•Z-υ•p,转向或顺转或反转、转速为n1•υ•p/(k•Z-υ•p)的谐波磁场(⑴式中第三项和式)。虽然这些谐波磁场的极对数各不相同,转速和转向也各式各样,但却都在定子绕组中感应出相同频率υ•f1的谐波电势。接下来我们就分别对这三种磁场产生的谐波电势进行解析计算,需要说明的是,这里用解析法计算纯粹是为了分析影响谐波电势大小的因素,以便后续讲解削弱谐波电势的机理,实际设计电机时还是建议用有限元进行定量仿真计算。 1.2 基本谐波磁场产生的υ次谐波电势 基本谐波磁场的极对数为υ•p,转速为n1,磁场幅值为Bυ0。感应出的谐波电势频率为υ•f1,谐波电势有效值为: Eυ0=4.44•υ•f1•Kdpυ•W•Φυ0 ⑷ Φυ0=(2/π)•Bυ0•τυ0•l ⑸ τυ0=π•D/(2υ•p) ⑹ 式中:Φυ0为基本谐波磁场的每极磁通;τυ0为基本谐波磁场的极距;D为电枢直径;l为铁心长;W为每相串联匝数;Kdpυ为υ次谐波绕组系数。将⑵、⑸、⑹式代入⑷式得: Eυ0=4.44•υ•f1•Kdpυ•W•(2/π)•Fυ•λ0•π•D•l/(2υ•p) =4.44•f1•(Kdpυ•W/p)•D•l•Fυ•λ0 =Ke•Kdpυ•Fυ•λ0 ⑺ 式中:Ke=4.44•f1•W•D•l/p,对于已经制造完成的电机,在一定的转速下(f1一定),Ke为一常数。由⑺式可见,由基本谐波磁场产生的υ次谐波电势与υ次谐波的绕组系数Kdpυ、υ次谐波的磁势幅值Fυ以及气隙平均磁导λ0成正比,要想削弱基本谐波磁场产生的谐波电势,需要从这三个方面入手(后续会详细讲解削弱方法)。 1.3 极对数为k•Z+υ•p的谐波磁场产生的υ次谐波电势 极对数为k•Z+υ•p的谐波磁场转速为n1•υ•p/(k•Z+υ•p),磁场幅值为Bυk。在绕组中同样感应出频率为υ•f1的谐波电势,谐波电势有效值为: E′υk=∑【k=1,2,3…】4.44•υ•f1•Kdpυ•W•Φ′υk ⑻ Φ′υk=(2/π)•Bυk•τ′υk•l ⑼ τ′υk=π•D/[2(k•Z+υ•p)] ⑽ 式中:Φ′υk为极对数为k•Z+υ•p的谐波磁场的每极磁通;τ′υk为极对数为k•Z+υ•p的谐波磁场的极距。将⑶、⑼、⑽式代入⑻式并整理得: E′υk=∑【k=1,2,3…】(1/2)•Ke•Kdpυ•Fυ•λk/ [k•Z/(υ•p)+1] =∑【k=1,2,3…】(1/2)•Ke•Kdpυ•Fυ•∑【k=1,2,3…】(λk•(υ•p)/(k•Z+υ•p) =Ke•Kdpυ•Fυ•∑【k=1,2,3…】λk•ξ1 =Eυ0•∑【k=1,2,3…】(λk/λ0)•ξ1 (11) 式中: ξ1=(υ•p)/[2•(k•Z+υ•p)] (12) 由(11)式可见,极对数为k•Z+υ•p (k=1,2,3…)的一系列谐波磁场产生的υ次谐波电势有效值,除了与υ次谐波的绕组系数Kdpυ、υ次谐波的磁势幅值Fυ以及k阶气隙磁导λk成正比外,还与一个系数ξ1有关,由(12)式可见,这个系数ξ1<1,且(λk/λ0)<1,这就意味着这种极对数为k•Z+υ•p (k

02

天空是无限制的:基于语义的天空替换Sky is not limit:semantic aware sky replacement

第一个图片是输入图片,后面三个是不同风格的天空替换后的结果 这篇文章是给出一张输入的图片,论文中提出的方法自动的生成一组风格化天空图,我们首先使用了FCN全卷积神经网络,得到输入图片和一些参考图片的目标分割结果,然后使用我们自己设计的专门针对天空的线上分类器,分割出准确的天空区域,使用不同的天空对输入的图片的天空部分进行替换。看完这篇论文,我认为论文的重点其实在于如何找到跟输入图片相适应的天空,并产生一个让大家感觉很真实逼真的效果。 天空是图片中常见的背景,但由于拍摄时间的原因,导致通常一张照片很无趣。

09

历经22年,我国突破全球首次非人灵长类动物克隆技术,克隆猴“中中”“华华”已可批量“生产”!

“克隆猴”非一日之功,三项关键技术奠定了其的诞生。 1月25日,《自然》杂志上刊载的克隆猴研究成果引起了国内外的轰动,这项成果由中科院上海生命科学研究院神经科学研究所孙强研究员及其团队研制出来,实现了世界上首次非人灵长类动物的体细胞克隆。 图 | 被命名为“中中”和“华华”的克隆猴 相比较以前熟知的克隆羊多利等克隆成果,这项研究的伟大之处在于技术准确度更高,可批量“生产”。 多利是两百多次夭折中的“幸运儿” “中中”“华华”成功概率更低 时间线来回到1997年,当时《自然》杂志公布了一项震惊世界的研究成果

03
领券