首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【腾讯云HAI域探秘】10分钟速通腾讯HAI-高性能计算服务

    腾讯云高性能应用服务(Hyper Application lnventor,HA),是一款面向 Al、科学计算的 GPU 应用服务产品,为开发者量身打造的澎湃算力平台。无需复杂配置,便可享受即开即用的GPU云服务体验。在 HA] 中,根据应用智能匹配并推选出最适合的 GPU 算力资源,以确保您在数据科学、LLM、AI作画等高性能应用中获得最佳性价比此外,HAI的一键部署特性让您可以在短短几分钟内构建如 StableDifusion、ChatGLM 等热门模型的应用环境。而对于 Al 研究者,我们的直观图形界面大大降低了调试的复杂度,支持jupyterlab、webui 等多种连接方式,助您轻松探索与创新。现在,只需打开浏览器,HAI 便为您打开了一片无限可能的高性能应用领域。

    01

    【腾讯云HAI】都2023年了,HAI没玩过AIGC?

    :::info 腾讯云高性能应用服务(Hyper Application lnventor,HA),是一款面向 Al、科学计算的 GPU 应用服务产品,为开发者量身打造的澎湃算力平台。无需复杂配置,便可享受即开即用的GPU云服务体验。在 HA] 中,根据应用智能匹配并推选出最适合的 GPU 算力资源,以确保您在数据科学、LLM、AI作画等高性能应用中获得最佳性价比此外,HAI的一键部署特性让您可以在短短几分钟内构建如 StableDifusion、ChatGLM 等热门模型的应用环境。而对于 Al 研究者,我们的直观图形界面大大降低了调试的复杂度,支持jupyterlab、webui 等多种连接方式,助您轻松探索与创新。现在,只需打开浏览器,HAI 便为您打开了一片无限可能的高性能应用领域。 :::

    01

    都2023年了,HAI没玩过AIGC?

    腾讯云高性能应用服务(Hyper Application lnventor,HA),是一款面向 Al、科学计算的 GPU 应用服务产品,为开发者量身打造的澎湃算力平台。无需复杂配置,便可享受即开即用的GPU云服务体验。在 HA] 中,根据应用智能匹配并推选出最适合的 GPU 算力资源,以确保您在数据科学、LLM、AI作画等高性能应用中获得最佳性价比此外,HAI的一键部署特性让您可以在短短几分钟内构建如 StableDifusion、ChatGLM 等热门模型的应用环境。而对于 Al 研究者,我们的直观图形界面大大降低了调试的复杂度,支持jupyterlab、webui 等多种连接方式,助您轻松探索与创新。现在,只需打开浏览器,HAI 便为您打开了一片无限可能的高性能应用领域。

    02

    AB试验(三)一次试验的规范流程

    8规则详述: · 流量从上往下流过分流模型 · 域1和域2拆分流量,此时域1和域2是互斥的 · 流量流过域2中的B1层、B2层、B3层时,B1层、B2层、B3层的流量都是与域2的流量相等。此时B1层、B2层、B3层的流量是正交的 · 流量流过域2中的B1层时,又把B1层分为了B1-1,B1-2,B1-3,此时B1-1,B1-2,B1-3之间又是互斥的 应用场景 · 如果要同时进行UI优化、广告算法优化、搜索结果优化等几个关联较低的测试实验,可以在B1、B2、B3层上进行,确保有足够的流量 · 如果要针对某个按钮优化文字、颜色、形状等几个关联很高的测试实验,可以在B1-1、B1-2、B1-3层上进行,确保实验互不干扰 · 如果有个重要的实验,但不清楚当前其他实验是否对其有干扰,可以直接在域1上进行,确保实验结果准确可靠

    01

    出行黑科技!东京大学研发充气折叠电动自行车,可以放进背包

    共享式移动出行工具,已经进入了电动2.0时代。人们已经不能满足于普通自行车出行。在很多体量较大的城市,电动自行车可以更好的解决中等距离的通行需要。 但是,由于电动自行车造价较高,且后续充电和维护成本较大,因此在推广过程中存在很大的困难。而对于选择自行购买电动自行车的人群来说,电动自行车的停放问题同样令人十分苦恼。 如果有一种新型的个人出行方式可以轻松随需携带和使用,并且能保证一定的速度,那么人们通勤方式就可以得到彻底改变。 例如,东京大学的研究团队正在研究的Poimo,一种可以充气折叠的电动自行车,包括充气式车身主体和电动轮两部分。目前该产品并未投放市场,处在原型阶段。 当他们使用公共交通工具时,可以从背包中自取,快速方便的到达他们想去的地方。除此之外,为旅游业也可以带来极大的好处。人们将更加灵活地到达不同的景点,减少过长的步行距离带来的疲劳。

    02

    人类如何学习和表征网络?

    人类以一系列离散的项目接收来自周围世界的信息——从语言中的单词或音乐中的音符到书籍和互联网网站中的抽象概念。为了模拟他们的环境,从年轻时起,人们就被要求学习由这些项目(节点)形成的网络结构以及它们之间的联系(边)。但是,当人类只经历单个项目的序列时,他们如何发现网络的大规模结构?此外,人们对这些网络的内部地图和模型是什么样的?在这里,我们介绍图形学习,这是一个不断发展和跨学科的领域,研究人类如何学习和表示他们周围世界的网络。具体来说,我们回顾了在理解人们如何发现项目序列背后复杂的关系网方面的进展。我们首先描述已建立的结果,这些结果表明人类可以检测到精细尺度的网络结构,例如项目之间转换概率的变化。接下来,我们将介绍直接控制转移概率差异的最新实验,证明人类行为关键取决于网络的中尺度和宏观尺度特性。最后,我们介绍了人类图形学习的计算模型,这些模型对网络结构对人的行为和认知的影响做出了可测试的预测。我们始终强调图形学习研究中的开放性问题,这些问题需要认知科学家和网络科学家的创造性见解。

    03

    Cerebral Cortex:疼痛热刺激引起的脑功能网络分离与整合

    目前的研究旨在确定热痛期间大脑网络整合/分离的变化,使用高时间分辨率的网络连接事件优化方法。参与者(n = 33)主动判断施加于前臂掌侧的热刺激是否疼痛,然后在每次试验后评价温暖/疼痛强度。我们表明,试验中整合/分离的时间演化与疼痛的主观评级相关。具体来说,大脑在处理疼痛刺激时从隔离状态转变为整合状态。在所有的网络中,与主观疼痛评分的关联发生在不同的时间点。然而,当在较低的时间分辨率下测量时变功能连接时,评分和整合/分离之间的关联程度消失了。此外,与疼痛相关的整合增强在一定程度上可以通过网络之间连接的相对增加来解释。我们的研究结果强调了在单一时间点尺度上研究疼痛和大脑网络连接之间关系的重要性,因为通常使用的连接数据的时间聚合可能导致网络连接的细尺度变化可能被忽视。整合/分离之间的相互作用反映了大脑网络之间信息处理需求的变化,这种适应既发生在认知任务中,也发生在痛感处理中。

    03
    领券