行人重识别(Person re-identification)也称行人再识别,被广泛认为是一个图像检索子问题,是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,即给定一个监控行人图像检索跨设备下的该行人图像...行人重识别技术可以弥补目前固定摄像头的视觉极限,并可与行人检测、行人跟踪技术相结合,应用于视频监控、智能安防等领域。...一般行人重识别具有短时效应,我们需要识别的行人的衣服是一个主要特征,当然衣服只是特征之一,如果该行人更换了衣服,那么行人重识别可能会失效。...单帧 序列 挑战 行人重识别目前准确率只能达到90%,不同人脸识别,可以达到99%的准确率,主要原因为 常用的评价指标 rank-k:算法返回的排序列表中,前k位存在检索目标则称为rank-k命中。...第一个就击中了,所以它是rank-1击中;第二行第二个样本,它前3都未击中,第四个击中了,它属于前5击中,包括rank-1在那,所以是rank-5击中;第四和第五行都没有前五击中,但是在前10集中,所以它们都是好rank
AI 科技评论按:本文首发于知乎行人重识别专栏,AI 科技评论获其作者郑哲东授权转载。 1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。...这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。...现有大数据集往往采用自动检测的方法,比如 DPM 来检测行人,把行人从背景中切割出来。或者花钱,邀请很多标注者一起来抠人,标注数据。 那么我们如何定义什么样的二维变换是好的变换呢?...因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。...(背景过多的,我们切掉; 背景过少,缺部件的,我们用 0 来填,0 就是图中的黑色像素。)这样可以减轻后面分类网络的压力,make it easy。 量化的行人重识别指标也都不错。
1001封面.png SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一...ID的行人图或行人视频。...因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别?...都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。...作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。
SIGAI特约作者 Fisher Yu CV在读博士 研究方向:情感计算 什么是行人重识别(ReID) 如下图,给定一个行人图或行人视频作为查询query,在大规模底库中找出与其最相近的同一ID的行人图或行人视频...因为在安防场景下,跟踪一个目标,只靠人脸识别是不够的,在脸部信息丢失时(罪犯有时把脸特意蒙住一大部分,或者离太远了拍不清脸),行人信息就能辅助跟踪识别。 ReID与人脸识别有什么联系和区别?...都是多媒体内容检索,从方法论来说是通用的;但是ReID相比行人更有挑战,跨摄像头场景下复杂姿态,严重遮挡,多变的光照条件等等。...PCB框架[1] 如上图所示,PCB框架的流程是: 1、对输入384*128行人图提取深度特征(ResNet50),把最后一个block( averagepooling前)的下采样层丢弃掉,得到空间大小...作者在文中做了实验来对比结果,找到最优的组合方案~~ 至于为什么分part的效果会更好,也是基于行人结构分割的先验知识驱使(类似用Pose key point来做一样)。
序言 探索了行人特征的基本学习方法。在这个实践中,我们将会学到如何一步一步搭建简单的行人重识别系统。欢迎任何建议。...pytorch源码 https://github.com/layumi/Person_reID_baseline_pytorch 行人重识别可以看成为图像检索的问题。...给定一张摄像头A拍摄到的查询图像,我们需要找到这个人在其他摄像头下的图像。行人重识别的核心在于如何找到有鉴别力的行人表达。很多近期的方法使用了深度学习模型来抽取视觉特征,达到了SOTA的结果。...Part 1.2: Build Neural Network (model.py) 我们可以利用预训练的模型。普遍来说,利用ImageNet预训练的网络能达到更好的结果,因为它保留了一些好的特征。...Part 1.3: 训练 (python train.py) 好的。现在我们准备好了训练数据 和定义好的网络结构。
1.Motivation 近年来,对行人重识别(person re-ID)问题的研究也越来越多了。...这篇文章集中于语法层面上,也就是利用人体结构来增强识别能力。现阶段行人重识别的发展一部分是归因于大数据集和深度学习方法的出现。...所以一个直接的想法: 让深度学习方法自己来矫正输入,学习一个二维的变换,把行人对齐好以后,再做下一步的识别。 那么我们如何定义什么样的二维变换是好的变换呢?...因为 行人对齐和行人识别是可以互利互惠的两个问题。 当我们做行人识别的时候,行人人体是高亮的(可以见如下的热度图),背景中不含重要信息,自然就区分出来了。...(背景过多的,我们切掉; 背景过少,缺部件的,我们用 0 来填,0 就是图中的黑色像素。)这样可以减轻后面分类网络的压力,make it easy。 ? 量化的行人重识别指标也都不错。
前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。...ReID方法 基于表征学习(Representation learning)的方法是一类非常常用的行人重识别方法[1-4]。...在行人重识别问题上,具体为同一行人的不同图片相似度大于不同行人的不同图片。最后网络的损失函数使得相同行人图片(正样本对)的距离尽可能小,不同行人图片(负样本对)的距离尽可能大。...之后这8个特征按照图示的方式在不同的尺度进行联结,最终得到一个融合全局特征和多个尺度局部特征的行人重识别特征。...但是通常单帧图像的信息是有限的,因此有很多工作集中在利用视频序列来进行行人重识别方法的研究[17-24]。
来源:专知本文为课程介绍,建议阅读5分钟适合深度学习和行人重识别领域无基础的入门者学习。...该课程为浙江大学罗浩博士于2018年10月录制的《基于深度学习和行人重识别》网课视频,该课程首发于AI300学院。为了让更多人学习该课程,现免费在B站公开。...由于该网课录制于2018年末,所以知识点已经有些陈旧,因此主要适合深度学习和行人重识别领域无基础的入门者学习,有基础者无需学习此课程。...课程网站:B站视频 作者个人主页:http://luohao.site 课程目录 第一章、深度学习基础 1、从神经网络到深度学习 2、从LeNet到SENet 3、网络的压缩与加速原理 第二章、行人重识别原理...4、商业场景应用之行人重识别基本介绍 5、行人重识别——表征学习与度量学习 6、行人重识别——全局特征与局部特征 7、行人重识别——单帧与序列重识别 8、最新论文与未来发展 第三章、行人重识别实践 9
欢迎大家转发分享~ 行人重识别 Person Re-identification / Person Retrieval 专知荟萃 行人重识别 Person Re-identification / Person...:行人重识别 [https://zhuanlan.zhihu.com/personReid] 行人重识别综述:从哈利波特地图说起 行人再识别中的迁移学习:图像风格转换(Learning via Translation...) 行人对齐+重识别网络 SVDNet for Pedestrian Retrieval:CNN到底认为哪个投影方向是重要的?...用GAN生成的图像做训练?Yes! 2017 ICCV 行人检索/重识别 接受论文汇总 从人脸识别 到 行人重识别,下一个风口 GAN(生成式对抗网络)的研究现状,以及在行人重识别领域的应用前景?...(行人重识别)【包含与行人检测的对比】 行人重识别综述(Person Re-identification: Past, Present and Future) 进阶论文及代码 Person Re-identification
今天 arXiv 新出论文 Deep Learning for Person Re-identification: A Survey and Outlook,作者调查了245篇近两三年的行人重识别(Person...下图为作者总结的ReID技术的五大步骤: ?...1)数据收集; 2)包围框生成; 3)训练数据标注; 4)模型训练; 5)行人检索 作者将ReID技术分为Closed-world 和Open-world 两大子集: ?...2)度量学习中的损失函数设计: ? 另外在训练策略上要考虑样本不平衡的数据采样。 3)重排序优化: ? 封闭世界ReID中常用的数据集统计: ?...基于图像的ReID方法在四大数据集上的SOTA方法精度可视化: ? ? 基于视频的ReID方法在四大数据集上的SOTA方法精度可视化: ? ? 文中方法简称请参阅原论文。
行人重识别为国内现在主要的研究方向之一,投稿量则在逐年递增。...行人重识别CV顶级会议的接受论文量稳步提升。...行人重识别落地的产品很少, 而人脸识别的大量应用已经落地 ? 之前学界研究的少 多摄像头/跨摄像头问题。 以上是造成行人重识别 在学界火的原因吧。.... ---- 行人重识别:从哈利波特地图说起 一、本文的目的是提供一个行人重识别的简要概况。 为了方便/直观的理解这个问题,我们先来说两则相关的故事。...所以人脸识别在实际的重识别应用中很可能有限。 2. 有些人靠衣服的颜色就可以判断出来了,还需要行人重识别么? 衣服颜色确实是行人重识别 做出判断一个重要因素,但光靠颜色是不足的。
作者 | 庄伟铭 编辑 | 陈大鑫 行人重识别的训练需要收集大量的人体数据到一个中心服务器上,这些数据包含了个人敏感信息,因此会造成隐私泄露问题。...联邦学习是一种保护隐私的分布式训练方法,可以应用到行人重识别上,以解决这个问题。 但是在现实场景中,将联邦学习应用到行人重识别上因为数据异构性,会导致精度下降和收敛的问题。...数据集由9个最常用的 行人重识别 数据集构成,具体的信息如下: ?...完整的算法可以参考下图: ? 2 Benchmark结果 通过 Benchmark 的实验,论文里描述了不少联邦学习和行人重识别结合的洞见。这边着重提出两点因数据异构性导致的问题。 1....4 总结 针对数据隐私问题,这篇论文将联邦学习应用到行人重识别,并做了深入的研究分析。
但不仅仅局限于这两种技术,因为拥挤人群计数(Crowd Counting)往往与行人检测相关,而步态识别(Gait Recognition)可看作一种特殊的人员重识别,故将以上方向的论文均归为行人检测与重识别...行人检测的论文不多,总计 5 篇,从内容看解决行人与行人、行人与物体间的遮挡是研究的重点。 拥挤人群计数,总计 3 篇文章,都是在解决透视和尺度问题带来的挑战。...人员重识别部分总计 23 篇文章,除了基于图像的ReID(8篇),基于视频的ReID(3篇),含有众多细分方向:跨分辨率、跨域、跨模态(可见光-红外)、遮挡、非监督、射频信号人员重识别都很有特色。...另外中科院推出了一个着装改变的人员重识别数据集COCAS,相信能促进该领域更加实用化。 步态识别共 2 篇文章,这个方向研究的人不多,其中一篇来自著名的步态识别公司银河水滴等,且代码将开源。...基于射频信号的人员重识别 打败了基于图像视频的方法,且能更好的保护隐私 [30].Learning Longterm Representations for Person Re-Identification
导读 行人重识别(Person ReID)在安全部署领域有着广泛应用,当前的研究仅考虑ReID模型在干净数据集上的性能,而忽略了ReID模型在各种图像损坏场景(雨天、雾天等)下的鲁棒性。...贡献 本文是SUSTech VIP Group(南方科技大学 视觉智能与感知课题组)针对图像损坏场景下的行人重识别的研究。...相反的是,本文发现,在行人重识别任务中,模型的损坏鲁棒性和跨数据集泛化性之间存在着一定的关联。...实验结果表明,行人重识别任务中,模型的损坏鲁棒性和跨数据集泛化性之间存在强线性正相关(图左皮尔森相关系数ρ=0.97)。 5....结论 本文提出了一个全新的ReID任务场景,图片损坏场景下的行人重识别。
关键词:行人重识别 数据集 前沿技术 在茫茫人海中,你能不能一眼就找到想找的那个人? 如今,这个任务对于计算机来说,可能是小菜一碟了。而这得益于近年行人重识别技术的飞速发展。...行人重识别被称为人脸识别之后的「杀手级应用」 行人重识别已经成为人脸识别之后,计算机视觉领域的一个重点研究方向。...行人重识别用在哪儿? 首先,上文中已提到,行人重识别是人脸识别技术的一个重要补充。 人脸识别的前提是:清晰的正脸照。但在图像只有背面、或其它看不到人脸的角度时,人脸识别便失效了。...这时候,行人重识别便可通过姿态、衣着等特征,继续追踪目标人物。 目前,行人重识别技术在安防领域、自动驾驶等领域都有着广泛的应用。...; 行人检索 其中,数据收集作为第一步,是整个行人重识别研究的基础。
; 重识别模型训练,设计模型(主要指深度学习模型),让它从训练数据中尽可能挖掘“如何识别不同行人的隐藏特征表达模式”; 行人检索,将训练好的模型应用到测试场景中,检验该模型的实际效果。...构建行人重识别系统的五个主要步骤。包括:1)数据采集,2)行人框生成,3)训练数据标注;4)重识别模型训练,5)行人检索 全文的综述和展望都是围绕这五个步骤来展开和讨论的。...Closed-world 概括为大家常见的标注完整的有监督的行人重识别方法,Open-world 概括为多模态数据,端到端的行人检索,无监督或半监督学习,噪声标注和一些 Open-set 的其他场景。...,解决实际场景中查询行人图像缺失等问题; 可见光到红外 Re-ID:旨在跨模态匹配白天的可见光图像到夜晚的红外行人图像,也有一些方法直接解决低照度的重识别任务; 跨分辨率 Re-ID:不同高低分辨率行人图像匹配...现有无监督学习方法在常见数据集上的效果 3.4 噪声鲁棒的Re-ID 主要针对标注数据或者数据采集中产生的一些噪声或错误等,方法包括: Partial Re-ID:解决行人图像区域部分被遮挡的行人重识别问题
但已有的行人重识别(person re-ID)工作往往只关注 2D 空间中的图像匹配,忽略了3D的人体先验信息。...在本篇文章中,我们做了一个微小的尝试,即在三维空间中通过生成的点云数据 来执行人体的匹配。...最后和传统CNN一样,我们映射到一个512维的特征,做行人的身份loss L_{id}. 4....(1)不得不说,做实验的时候,我们也遇到了数据上的限制,很多数据集比如Market-1501,已经把图像都resize好了 到 128x64,会丢失行人的身高 胖瘦等信息,所以导致我们的模型不能用上更多行人身高的信息...我们可以看到,OGNet 只使用了 ResNet-50 差不多十分之一的参数量,但是达到了更好的效果。同时 OG-Net-Small 使用了1.2M的参数量,也比很多轻量级的网络好。
提出论点 好的研究想法,兼顾摘果子和啃骨头。...两年前,曾看过刘知远老师的一篇文章《好的研究想法从哪里来》,直到现在印象依然很深刻,文中分析了摘低垂果实容易,但也容易撞车,啃骨头难,但也可能是个不错的选择。...初入团队,寻找自己的立足点,需要一个好的工作想法。每年末,抓耳挠腮做规划,想要憋出一个好的工作想法。很多同学,包括我自己,陆陆续续零零散散想到很多点,然后自己不断否掉。...人的三维+时间半维 具体如何找到好的想法,一时半会没有头绪。因此,回到最初的起点,从人的层面,我有什么?我想要有什么?...引用 好的研究想法从哪里来 杜跃进:数据安全治理的基本思路 来都来了。
最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。...概念解释 “行人重(再)识别”,首先从字面上将就是对“行人”进行“识别”。其中的“重(再)”则是指“重新”、“再一次”的意思。 “行人重(再)识别”技术主要是应用在视频监控方面。...由于不同数据集合之间的差异,在一个数据集合上训练的模型直接应用于另外一个数据集合上的时候,行人重识别性能会出现大幅度的下降。 那么,行人重识别模型在跨数据集下的性能表现会是怎么样的?...行人重识别问题中的图片来源于不同的摄像头,然而,由于不同摄像头所处的角度、光照等环境的影响,行人重识别问题具有以下几个特点: 1....首先讲解下“行人重(再)识别”与“行人检测”的区别: 主要应用领域的区别: “行人重(再)识别”主要应用于刑侦工作、图像检索等方面。 “行人检测”主要用于智能驾驶、辅助驾驶和智能监控等相关领域。
在竞争越来越激烈的情况下,本次ECCV 腾讯优图实验室共入选8篇论文,涵盖目标跟踪、行人重识别、人脸识别、人体姿态估计、动作识别、物体检测等热门及前沿领域,再次展示了腾讯在计算机视觉领域的科研及创新实力...02 请别来打扰我:在其他行人干扰下的行人重识别 Do Not Disturb Me: Person Re-identification Under the Interference of Other...Pedestrians 传统的行人重识别假设裁剪的图像只包含单人。...然而,在拥挤的场景中,现成的检测器可能会生成多人的边界框,并且其中背景行人占很大比例,或者存在人体遮挡。从这些带有行人干扰的图像中提取的特征可能包含干扰信息,这将导致错误的检索结果。...此外,我们提出了反向注意模块和多人分离损失函数促进了注意力模块来抑制其他行人的干扰。我们的方法在两个新的行人干扰数据集上进行了评估,结果表明,该方法与现有的Re-ID方法相比具有更好的性能。 ?
领取专属 10元无门槛券
手把手带您无忧上云