上一篇: 语音识别系列︱用python进行音频解析(一) 这一篇开始主要是开源模型的测试,百度paddle有两个模块,paddlehub / paddlespeech都有语音识别模型,这边会拆分两篇来说...整体感觉,准确度不佳,而且语音识别这块的使用文档写的缺胳膊少腿的; 使用者需要留心各类安装问题。...是百度于2015年提出的适用于英文和中文的end-to-end语音识别模型。...语音识别模型。...5 语音识别 + 标点恢复 案例 这里简单写一个官方的: import paddlehub as hub # 语音识别 # 采样率为16k,格式为wav的中文语音音频 wav_file = '/PATH
近年来,由于深度学习技术的广泛应用,自动语音识别(ASR)系统的准确率有了显著的提高。...然而,人们目前主要是在通用语音的识别方面取得了性能的提升,但准确地识别有具体名字的实体(例如,小型本地商户)仍然是一个性能瓶颈。...我们决定通过将用户地理位置信息融合到语音识别系统中来提高 Siri 识别本地 POI 的名称的能力。...自动语音识别系统同城由两个主要部分组成: 一个声学模型,用于捕捉语音的声学特征和语言学单位序列之间的关系,如语音和单词之间的关系 一个语言模型(LM),它决定了某个特定的单词序列出现在一种特定的语言中的先验概率...在部署好基于地理位置的语言模型后,我们的自动语音识别系统的输出将具有特殊的标记,例如:在通过类语言模型框架识别的地理实体周围会有「\CS-POI」标记。
参考: 语音识别系列︱用python进行音频解析(一) 语音识别系列︱paddlehub的开源语音识别模型测试(二) 上一篇paddlehub是一些预训练模型,paddlespeech也有,所以本篇就是更新...1 安装 参考:PaddleSpeech 一键预测,快速上手Speech开发任务 PaddleSpeech 是 all-in-one 的语音算法工具箱,包含多种领先国际水平的语音算法与预训练模型。...你可以从中选择各种语音处理工具以及预训练模型,支持语音识别,语音合成,声音分类,声纹识别,标点恢复,语音翻译等多种功能,PaddleSpeech Server模块可帮助用户快速在服务器上部署语音服务。...文档链接:语音识别 第一个语音识别的示例: >>> from paddlespeech.cli.asr.infer import ASRExecutor >>> asr = ASRExecutor()...、:;) 3 案例 3.1 视频字幕生成 是把语音识别 + 标点恢复同时使用。
cd /userdata/dev_ws/ # 配置TogetheROS环境 source /opt/tros/setup.bash # 从tros.b的安装路径中拷贝出运行示例需要的配置文件。...,说出“地平线你好”后,即可唤醒 当人依次在麦克风旁边说出“地平线你好”、“向左转”、“向右转”、“向前走”、“向后退”命令词,语音算法sdk经过智能处理后输出识别结果,log显示如下 识别到语音命令词...语音控制 SSH连接OriginBot成功后,配置智能语音模块: #从TogetheROS的安装路径中拷贝出运行示例需要的配置文件。...bash config/audio.sh 启动机器人底盘在终端中输入如下指令,启动机器人底盘: ros2 launch originbot_bringup originbot.launch.py 启动语音控制以下是口令控制功能的指令...: ros2 launch audio_control audio_control.launch.py 此时即可看到小车运动的效果了
基于树莓派的语音识别和语音合成 摘要 语音识别技术即Automatic Speech Recognition(简称ASR),是指将人说话的语音信号转换为可被计算机程序所识别的信息,从而识别说话人的语音指令及文字内容的技术...别看其外表“娇小”,内“心”却很强大,视频、音频等功能通通皆有,可谓是“麻雀虽小,五脏俱全”。...本文采用百度云语音识别API接口,在树莓派上实现低于60s音频的语音识别,也可以用于合成文本长度小于1024字节的音频。...材料: 树莓派3B+ ×1 USB声卡 ×1 麦克风 ×1 PC ×1 音视频线材若干 实现过程: 一、 百度云语音识别 python-SDK的安装 为了能够调用百度云语音识别API接口,需要申请属于自己的百度...,实现对本地语音文件的识别。
编辑导语: 随着语音交互技术的日渐成熟,越来越多的智能硬件都选择增加语音能力作为产品卖点之一。但是,设备在进入语音交互工作状态的时候,需要先进行唤醒操作。...常见的唤醒语音交互的操作有按键或者触屏形式,但是,为了进一步降低学习成本和操作复杂度,也有不少的智能硬件选择通过语音唤醒的方式来激活交互功能。...本文将综合对比市面上各家提供的语音唤醒技术相关指标,可以帮助你快速掌握语音唤醒技术的情况。...一、语音唤醒技术的相关核心指标 1、唤醒率 语音唤醒的主要目的既然是激活设备进入交互工作状态,那么,唤醒率的高低就显得额外重要了。理论上,最好的状态就是我只要说一次唤醒词,设备就能立即响应。...总结:语音唤醒的技术指标,除了与算法相关之外,还与智能硬件的结构设计、芯片算力、使用场景等息息相关。
概 述 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列...与说话人识别及说话人确认不同,后者尝试识别或确认发出语音的说话人而非其中所包含的词汇内容。 语音识别技术的应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。...训练是指对预先收集好的语音进行信号处理和知识挖掘,获取语音识别系统所需要的“声学模型”和“语言模型”;识别是对用户实时语音进行自动识别。...2、隐马尔可夫法(HMM) 隐马尔可夫法(HMM)是70年代引入语音识别理论的,它的出现使得自然语音识别系统取得了实质性的突破。...HMM方法现已成为语音识别的主流技术,目前大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。
1.0 语音芯片分类-语音播报-语音识别-语音合成关于声音的需求,从始至终,都是很刚需的需求 。从语音芯片的演化就能看出很多的端倪,很多很多的产品他必须要有语音,才能实现更好的交互。...而语音芯片的需求分类,其实也是很好理解的,从市场上常用的芯片产品特性,大概就能归类如下:语音播报芯片--KT148A语音识别芯片--思必驰-云知声语音合成芯片-TTS语音播报的类别-KT148A它实现的原理...:就是语音的预存,然后合适的操作,比如:一线受控、按键触发、感应触发等等,播放出来至于声音的音质、大小等等,再去根据不同的需求,寻找其中某一个芯片来完成即可 。...推荐KT148A-sop8解决方案,大概的产品类型如下:语音识别的类别-思必驰-云知声1、这个品类就很复杂了,是语音芯片里面最复杂的存在,常见的家电语音控制,设备的语音唤醒,在线识别和离线识别2、都是相差很多很多...毕竟这个对芯片的要求相对低,所以成本控制的比较好如果需要医院叫号机类型的应用,那TTS就必须上了,没有什么比他还灵活的至于语音识别类型的应用,离线的应用还是推荐云知声,他们的平台做得好,前期验证的成本比较低还要分清楚您的需求
这篇论文介绍了一种名为Moonshine的语音识别模型系列,该模型针对实时转录和语音命令处理进行了优化。...该模型在各种长度的语音片段上进行训练,但不需要使用零填充,从而在推理时间内提高了编码器的效率。...1 Introduction 实时自动语音识别(ASR)对于许多应用至关重要,包括在演讲中的实时转录、听力障碍人士的辅助工具以及智能设备和可穿戴设备中的语音命令处理。...第3部分描述了Moonshine的架构、数据集准备和训练过程,而第4部分在标准语音识别数据集上提供了结果的评估。第5部分得出结论。...作者将连续的语音段组装成更长的训练实例,使得实例的持续时间在[4,30]秒之间,且连续段之间的时间不超过2秒。
域名现在也被列入了一种无形资产,也被国家越来越重视,很多域名都不能随便使用了,那么我们在选择创办网站的时候,服务器和域名是必不可少的,域名在哪里买比较好呢?在购买的时候还需要注意哪些事项呢?...域名在哪里买比较好 域名在哪里买比较好,最好是选择那些大型靠谱的交易平台,如果是注册域名的话就去那种大型的域名注册商。...当然,在交易的时候去专业正规的交易平台购买域名,我们的权益就会有所保证,而且在后期维护的时候他们也会更加地负责。...购买域名的时候有哪些要注意的 在域名购买之前我们要考虑的因素也有很多,首先就是域名的长度。...以上就是域名在哪里买比较好的相关信息,我们在注册或购买域名时候需要注意的一些内容,大家如果还有什么疑问的话,也可以上网自行搜索。
导读 ---- 语音情感识别能够使人机交互更加和谐自然,近来收到了越来越多的关注。语音情感识别系统主要分为语音情感特征提取和情感建模两个重要的部分。...传统的语音情感特征主要是基于手工特征包括韵律、频谱和音质三种,传统的情感模型主要是基于SVM和HMM等方法。...随着深度学习的发展,深度神经网络也被成功地应用在了语音情感识别领域,主要是利用神经网络提取更为鲁棒有效地情感特征和基于时序关系建立情感模型,而且其他领域的模型也有效地提升了语音情感识别的性能。...Introduction ---- 语音情感识别是对音频进行情感分类。本文从语音情感识别的情感特征提取和情感模型构建两个方面进行说明,并介绍一些经典的方法和模型。...近来深度学习的发展,许多深度网络方法被用来提取鲁棒的语音情感特征。最典型的是利用无监督学习自编码器通过重建损失来获得有效的特征,并且还能降低特征维度。
他们如何看待这种技术融合的趋势? 本期《智者访谈》邀请到著名开源语音识别项目 Kaldi 的创始人、小米集团语音首席科学家 Daniel Povey 博士。...如果你去参加语音会议,会发现人们对新的语音技术并不那么兴奋。这种情况以前也出现过,但这次可能是永久性的,因为语音识别确实已经做得很好了。...Dan Povey:当然,在一些应用场景中语音会被整合,但我认为独立的语音识别系统仍然会继续存在。我希望通过我们的研究,能找到对 AI 普遍有用的方法。...他首次将序列区分性训练方法应用于语音识别,他提出的 LF-MMI 建模方法至今仍为商用语音识别系统普遍使用的标准技术。...他也是将深度学习用于语音识别领域的重要引领者,在语音识别中推广了时延神经网络,配合 LF-MMI 训练,是 2015-2020 年学术界和工业界普遍使用的最佳组合。
作者:侯艺馨 总结 目前语音识别的发展现状,dnn、rnn/lstm和cnn算是语音识别中几个比较主流的方向。...1 语音识别为什么要用CNN 通常情况下,语音识别都是基于时频分析后的语音谱完成的,而其中语音时频谱是具有结构特点的。...,语音识别取得了很大的突破。...百度语音识别发展 百度发现,深层 CNN 结构,不仅能够显著提升 HMM 语音识别系统的性能,也能提升 CTC语音识别系统的性能。...5)基于DeepCNN 的端对端语音识别引擎,也在一定程度上增加了模型的计算复杂度,通过百度自研的硬件,也使得这样的模型能够为广大语音识别用户服务。
语音识别技术的进步与挑战大家好,我是Echo_Wish。今天我们来聊聊语音识别技术,这个已经深入到我们日常生活中的神奇技术。从智能音箱到手机助手,再到车载导航系统,语音识别无处不在。...它的快速发展给我们的生活带来了极大的便利,但同时也面临着诸多挑战。一、语音识别技术的进步语音识别技术从诞生至今,经历了巨大的进步。最初的语音识别系统只能识别有限的词汇,且准确率较低。...随着计算能力的提升和机器学习算法的发展,语音识别技术取得了长足的进展。1. 语音识别的基本原理语音识别系统主要包括以下几个步骤:语音采集:通过麦克风等设备采集语音信号。...数据隐私与安全语音识别系统需要采集和处理大量的语音数据,这带来了数据隐私和安全问题。如何保护用户的隐私,防止数据泄露,是语音识别技术在推广应用中必须解决的问题。...三、未来展望尽管面临诸多挑战,语音识别技术的未来依然充满希望。以下是一些可能的未来发展方向:1. 多模态融合结合语音、图像、文本等多种模态的信息,可以提升语音识别的准确率。
文章目录 问题 解决 截图 srt格式原理 识别语音的讯飞接口调用函数 处理结果,得到字符 列表合成字典 问题 讯飞文字转写长语音只有5h免费,想要体验50000分钟白嫖的,看我另一篇文章 最近在看一些教程...,发现没有字幕,网络上也没有匹配的,看着很别扭 因此我使用au处理了视频,得到了视频声音,wav格式,20多分钟长度 然后使用讯飞的语音识别接口识别了下,得到了每句话识别的文字和视频对应的时间 然后按照...srt格式对其进行了输出 这样就能给那些没有字幕的视频自动添加字幕了 我的需求大致满足了,记录一下。...解决 截图 视频字幕效果 ? 字幕是语音识别自动添加的 代码框输出格式 ? 最后会生成srt字幕文件 srt格式原理 ?...,这是我查的资料https://www.cnblogs.com/tocy/p/subtitle-format-srt.html 识别语音的讯飞接口调用函数 这个直接复制粘贴就行,只是一个调用的函数,非常通用
项目介绍 本项目是基于Pytorch实现的语音情感识别,效果一般,提供给大家参考学习。...源码地址:SpeechEmotionRecognition-Pytorch 项目使用 准备数据集,语音数据集放在dataset/audios,每个文件夹存放一种情感的语音,例如dataset/audios...python export_model.py 预测语音文件。...python infer.py --audio_path=dataset/audios/angry/audio_0.wav 数据预处理 在语音情感识别中,我首先考虑的是语音的数据预处理,按照声音分类的做法...声谱图和梅尔频谱这两种数据预处理在声音分类中有着非常好的效果,具体的预处理方式如下,但是效果不佳,所以改成本项目使用的预处理方式,这个种预处理方式是使用多种处理方式合并在一起的。
TSINGSEE青犀视频平台EasyCVR内,已经能够通过国标GB28181协议实现语音对讲功能,在大华SDK的研发方面,也开发了该功能,本文和大家分享下。...未命名1613697203.png EasyCVR语音对讲主要用于实现本地平台与前端设备所处环境间的语音交互,解决本地平台需要与现场环境语音交流的需求。...非转发模式,即本地PC与登录的设备之间实现语音对讲;转发模式,即本地PC与登录设备相应通道上连接的前端设备之间实现语音对讲。 调用 CLIENT_StartTalkEx,设置回调函数并开始语音对讲。...void CALLBACK HaveReConnect(LLONG lLoginID, char *pchDVRIP, LONG nDVRPort, LDWORD dwUser); // 语音对讲的音频数据回调函数...SDK 接口 // 通过 CLIENT_StartTalkEx 中设置该回调函数,当收到本地 PC 端检测到的声卡数据,或 者收到设备端发送过来的语音数据时,SDK 会调用该函数 void CALLBACK
▌语言识别工作原理概述 语音识别源于 20 世纪 50 年代早期在贝尔实验室所做的研究。早期语音识别系统仅能识别单个讲话者以及只有约十几个单词的词汇量。...现代语音识别系统已经取得了很大进步,可以识别多个讲话者,并且拥有识别多种语言的庞大词汇表。 ▌选择 Python 语音识别包 PyPI中有一些现成的语音识别软件包。...▌音频文件的使用 首先需要下载音频文件链接 Python 解释器会话所在的目录中。 AudioFile 类可以通过音频文件的路径进行初始化,并提供用于读取和处理文件内容的上下文管理器界面。...现在我们就得到了这句话的 “the”,但现在出现了一些新的问题——有时因为信号太吵,无法消除噪音的影响。 若经常遇到这些问题,则需要对音频进行一些预处理。...可以通过音频编辑软件,或将滤镜应用于文件的 Python 包(例如SciPy)中来进行该预处理。处理嘈杂的文件时,可以通过查看实际的 API 响应来提高准确性。
RNN-Transducer针对CTC的不足,进行了改进,使得模型具有了端到端联合优化、具有语言建模能力、便于实现Online语音识别等突出的优点, 更加适合语音任务,值得引起大家的重视。...讲者简介 ---- 田正坤,中国科学院自动化研究所智能交互团队,直博二年级,目前主要研究兴趣集中在端到端语音识别以及低资源语音识别。 ?...因此,本文从CTC模型出发,一步步引入为什么要使用RNN-T对语音识别任务建模,RNN-T模型还有什么问题存在。 ?...CTC对于语音识别的声学建模带来了极大的好处,(1)化繁为简,不在需要强制对齐,可以使用文本序列本身来进行学习训练(2)加速解码,大量Blank的存在,使得模型在解码过程中可以使用跳帧操作,因此大大加速了解码过程...但是CTC模型仍然存在着很多的问题,其中最显著的就是CTC假设模型的输出之间是条件独立的。这个基本假设与语音识别任务之前存在着一定程度的背离。
而实现这一目标的重要前提是计算机能够准确无误的听懂人类的话语,也就是说高度准确的语音识别系统是必不可少的。 作为国内智能语音与人工智能产业的领导者,科大讯飞公司一直引领中文语音识别技术不断进步。...通过进一步的研究,我们在FSMN的基础之上,再次推出全新的语音识别框架,将语音识别问题创新性的重新定义为“看语谱图”的问题,并通过引入图像识别中主流的深度卷积神经网络(CNN, Convolutional...CNN早在2012年就被用于语音识别系统,并且一直以来都有很多研究人员积极投身于基于CNN的语音识别系统的研究,但始终没有大的突破。...,更好的表达了语音的长时相关性,比学术界和工业界最好的双向RNN语音识别系统识别率提升了15%以上。...在和其他多个技术点结合后,讯飞DFCNN的语音识别框架在内部数千小时的中文语音短信听写任务上,获得了相比目前业界最好的语音识别框架——双向RNN-CTC系统15%的性能提升,同时结合讯飞的HPC平台和多
领取专属 10元无门槛券
手把手带您无忧上云