展开

关键词

商品标题实体识别

比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息 ,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。 本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。 值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。 举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。

23620

为什么商品视觉识别公司最后都去做了智能货柜?

虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。相比之下,智能货柜等相对封闭且SKU数量有限的场景,可能更适合这项技术的落地。 奇怪的是,虽然基于视觉的商品识别技术理论上有非常广泛的应用场景,比如拍照购、货架陈列分析、流行趋势预测等等,但这个领域的企业不管从哪个方向切入,最后似乎都落在了智能货柜这个点上。 于是他开始思考能否让图片直接链接到商品,用户拍摄照片或上传图片,就可自动识别图片中的鞋子、包、衣服等商品,并显示商品购买链接。 在做了货架陈列分析等尝试之后,戴剑彬意识到,虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。 因此,海深科技希望能够成为智能零售终端的平台运营方,品牌方通过入驻或者竞价的方式参与商品供应。

82510
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    同款商品识别的克星--ArcFace!

    ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力

    52710

    API智能识别平台,API接口智能识别

    API智能识别平台可以实现AI智能识别业务系统API接口,实现已有业务系统能力及数据高效开放、快速集成,加快企业系统集成过程,快速实现企业数字化转型步伐。 而通过API智能识别平台就可以很好的解决这个问题,通过RestCloud的智能识别平台,能自动识别业务系统的API接口可以快速地把遗留业务系统的能力和数据开放出来。 API接口智能识别功能——自动化识别 1、Restful WebService自动识别 支持智能识别业务系统中的API以及WebService接口并排除掉非API接口操作。 3、智能识别API参数 API智能识别平台能智能识别业务系统API中的参数并可对输入参数进行一步的校验和个性化的转换配置。 image.png API智能识别平台——业务逻辑智能识别 一、智能识别API以及对应的SQL语句 在识别API接口的同时系统能自动识别出此API操作的SQL语句 二、能按业务场景识别API接口

    14340

    NER | 商品标题属性识别探索与实践

    ---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别商品的一些属性标签,包括不限于品牌 ▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。 主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑 而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。 多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。

    8720

    智能识别方面主要进展 | 语音识别、OCR识别、图像识别、生物识别…… | 智能改变生活

    智能核心是对认知能力的升级革命,从感知、认知到决策执行,目前基础理论层、技术层的发展已经达到认知层面的建模与分析,应用层则体现为利用智能技术解决各种多模态目标识别的速度和精度,本文整理了目前市场上智能识别领域的典型应用进展及部分厂商 车牌识别:车牌识别技术相信大家都不会觉得陌生,智能交通,小区停车场等,都有很好的应用.为满足市场和用户需求。 相信未来虹膜识别技术在中国市场的空间已经被打开,未来有望在更多智能终端和日常领域得到应用。 ? OCR(Optical Character Recognition,光学字符识别智能识别技术:通过对图片中的文字进行提取识别,转换成可检索的数据。 统计数据显示,2015年,全球智能终端指纹识别芯片的出货量达到4.78亿颗,市场销售额达到21.1亿美元。

    99130

    【深度学习】同款商品识别的克星--ArcFace!

    利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。

    20540

    智能识别图像识别采用了什么原理?智能识别图像识别有哪些应用?

    ,从而减少人工成本的支出,让机器代替人力操作,比如现在比较火热的智能识别图像识别技术,那么智能识别图像识别采用了什么原理? 智能识别图像识别有哪些应用? 智能识别图像识别采用了什么原理? 人工智能技术是涵盖了非常多样的领域的,其中图像识别技术就是现在发展比较火爆的重要领域,对于各种图像都可以通过人工智能进行识别,从而达到各种目的,很多人会问智能识别图像识别采用了什么原理? 智能识别图像识别这项技术虽然并没有完全成熟,但是基础的技术已经能够应用到很多方面的,那么智能识别图像识别有哪些应用? 关于智能识别图像识别的文章内容今天就介绍到这里,相信大家对于智能识别图像识别这项技术已经有所了解了,相信在未来的某一天人工智能的各种技术都会成熟的。

    99730

    快消品图像识别丨无人店背后的商品识别技术

    当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。 人工智能商业公司ImageDT,则利用商品图像识别技术提供2B商业服务,包括基于互联网图片大数据的商业分析,以及基于门店货架识别的渠道数据洞察,帮助消费品企业提升业绩。 除此之外,ImageDT还通过自主研发智能灯箱和智能采集车,模拟各种不同的场景对商品进行360°拍摄从而建立庞大的训练数据库,以此来获取最丰富的训练数据。 ? 人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。 ImageDT正在做的,就是实现这个庞大的AI工程,让机器能够自动地、准确地识别每一件商品。零售智能货架演示 ?

    1.9K70

    智能识别文字是如何实现的?智能识别文字识别率高吗?

    现在社会中人们书写文字的机会几乎是很少的,不过平时依然需要接触到各种文字,还经常会用到智能识别文字这项技术,从图片或者其他地方寻找需要的文字,那么智能识别文字是如何实现的?智能识别文字识别率高吗? 智能识别文字是如何实现的? 智能识别文字属于人工智能中非常重要的领域之一,和图片识别的地位差不多,不过相对图片识别技术来说智能识别文字技术要成熟的多,毕竟文字的形体以及特征是更加明显的,那么智能识别文字是如何实现的? 智能识别文字在平时生活中大家也都接触过,很多人会问智能识别文字识别率高吗?文字识别率和识别的软件以及应用的技术有很大关系,现在技术最为先进的智能识别文字软件识别率能高达99.8%以上。 以上就是关于智能识别文字的文章内容,相信大家对于智能识别文字有一定的了解了,智能识别文字技术在现在很多行业中应用都是比较广泛的,由此也能看出智能识别文字技术的前景是非常好的。

    40120

    10分钟搭建商品结算平台!商品、车辆识别一网打尽

    "商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。 当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装 华东理工大学的高材生颜鑫,也是飞桨领航团的团长,带领团队基于 PP-ShiTu 开发的这套智能购物平台系统:通过图像即可精准识别顾客购买的商品,并返回完整的购物清单及应付价格,为智能货柜提供了非常好的视觉化解决方案 ,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。 其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息

    17530

    芒果TV商品意图识别top3思路分享

    比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。 其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页 文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。

    9020

    猿设计9——真电商之商品实体识别

    商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ? 说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ? 我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。 需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。 在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。

    20120

    智能门锁:人脸识别技术

    智能门锁在经过2018年的爆发直至近几年来的持续增长,目前市场上各类的产品基本都涵盖了密码、刷卡、指纹这几项关键的开门方式,人脸识别技术作为一种新的引用技术,成为众多厂家为追求产品差异化而形成的一种趋势 图片来源:https://www.sohu.com/a/501784145_161795 2D人脸识别技术 2D人脸识别技术早在安防、监控、门禁、考勤中就已有应用,其硬件结构相当于一颗RGB摄像头,通过捕捉人脸图像 目前基于神经网络的人脸识别算法在各种开源数据集上测试的准确率已经达到99.58%,但基于二维数据的图像检测,其深度信息丢失,所采集到的二维特征难以应对“活体”伪装攻击。 图片来源:《2021人脸识别行业白皮书》 3D人脸识别技术 3D人脸识别技术加入了深度信息算法技术,与2D识别技术相比,其识别准确率相差不大,但是在活体检测的准确率上有一定的提高。 :艾芯智能等; 以双目视觉为主打的厂家有:商汤、旷视等 与2D人脸识别相比,3D人脸识别结合深度信息,在防伪安全上由此有了提高,在3D人脸识别的3中技术中,结构光作用距离相对较近,良率及一致性相对较差;

    7730

    看朱光如何解析智能金融对实体经济的独特价

    但关注科技圈八卦的同时,更应关注乌镇会议上关于人工智能、共享经济、金融科技等热门主题分享。 ,比如帮助教育机构识别靠谱的生源。 百度金融对实体经济的独特价值 百度金融一直都很重视智能金融这个概念,尤其强调智能金融能力的开放。 第二,百度的智能金融能力,可以让传统金融机构拥有普惠金融能力。 技术+数据成为百度金融的一个独特性优势,就是智能金融能力。 百度金融已制定三步走战略,最后一步就是要将智能金融能力开放,让传统金融机构也拥有智能金融能力。

    44170

    瑞芯微发布8.1 NNAPI SDK:可开发人脸识别商品识别,疲劳检测等

    适用基于主流模型架构衍生开发的各类应用,如人脸识别、ADAS、商品识别、疲劳检测等。RK3399具有高性能、高扩展、全能型应用特性。 相关应用提供加速支持,具备四大优势特性: 1、兼容性广:标准API,直接支持基于Android NNAPI开发的各类APK应用; 2、通用性强:可支持众多主流模型架构,适用于基于主流模型架构衍生开发的各类应用,包括人脸识别 、ADAS、商品识别、疲劳检测等; 3、性能飙升:在多项任务中可以取得实时性能,如采用MobileNet进行图像识别最高帧率达23.2帧; 4、功耗更低:基于GPU高效计算,满负荷功耗仅1W; 根据瑞芯微 Rockchip官方提供的图像识别及目标检测的APK测试数据来看,主流模型性能表现优异: ? AI计算正处于爆发增长期,瑞芯微人工智能芯片已广泛应用于图像识别智能安防、智能驾驶、语音识别、消费类电子等领域。

    99320

    标识解析解决工业商品未来—防伪追溯、身份识别问题

    通过标识解析来识别当前生产的产品,从而调用相应的加工程序实现柔性制造,通过识别零部件上的一维、二维码,从而实现上万个零部件防伪、纠错,一次下线合格率上升2个百分点。 而标识解析技术的一物一码溯源防伪功能,可以有效识别假冒伪类产品识别,保证产品质量安全可靠。 在工业互联网的基础共性支撑技术——标识解析的推进上,忽米网走在行业前列。

    22200

    相关产品

    • 智能识别

      智能识别

      腾讯云视频智能识别基于腾讯各实验室(优图实验室、微信智聆等)最新研究成果,为您提供视频内容理解的全面服务,支持识别视频内的人物、语音(ASR)、文字(OCR)、物体以及帧画面标签。对视频进行多维度结构化分析,方便媒资管理,为存档媒资再利用赋能。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券