展开

关键词

入门|图像处理技术

基本介绍 图像增强技术的作用,简单点说,就是通过对图像进行加工处理,使图像能更好的在其他领域起作用,比如人脸识别,图像分类等人工智能领域,又或者是在通信领域,通过加工恢复图像在传输中丢失的某些东西。 学习图像增强技术也是如此,在学习这门新技术前,我们可以根据一些以往的经验先想想大概要做些什么。 图像的收集 图像的输入 图像处理 图像的输出 图像的收集 这里主要涉及的是从视频中截取我们需要的图片。需要使用到的软件“ffmpeg”。 图像的输入 很多时候我们需要处理的是大量的图片,这就需要批量的处理文件。 图像增强技术处理技术很多,先从一些简单操作开始。

38540

常见的图像处理技术

通过PIL和OpenCV来使用一些常见的图像处理技术,例如将RGB图像转换为灰度图像、旋转图像、对图像进行消噪、检测图像中的边缘以及裁剪图像中的感兴趣区域。 使用OpenCV中的模板匹配搜索图像中的对象。 所需安装的库:PIL、OpenCV、imutils 为什么我们需要学习图像处理技术? 深度学习对于图像的分析、识别以及语义理解具有重要意义。 “图像分类”、“对象检测”、“实例分割”等是深度学习在图像中的常见应用。为了能够建立更好的训练数据集,我们必须先深入了解基本的图像处理技术,例如图像增强,包括裁剪图像图像去噪或旋转图像等。 其次基本的图像处理技术同样有助于光学字符识别(OCR)。 图像处理技术通过识别关键特征或读取图像中的文本信息,来提高图像的可解释性,以便对图像中存在的对象进行分类或检测。 ? 结论 我们所讨论的最常见图像处理技术可用于分析图像,例如图像分类,目标检测以及OCR。

84850
  • 广告
    关闭

    老用户专属续费福利

    云服务器CVM、轻量应用服务器1.5折续费券等您来抽!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    iOS 图像处理技术追踪-Core Image

    Core Image 是苹果官方提供的图像处理框架,通过丰富的 built-in(内置)或自定义 Filter(过滤器)高效处理静态图片、动态图片或视频。 使用 AVPlayerView 时,需要创建 AVMutableVideoComposition 对象,CI 滤镜在 block 中执行图像处理任务。 CI 滤镜的子类也必须重载输出图片的属性,Kernel 将在 getter 中进行图像处理并创建新图像。 随着苹果在 Core Image、端智能(CoreML)、硬件支持(自研芯片)等方面进行技术提升,手淘的 CDN 图片适配处理库可以考虑增加“图片内容”作为新的维度,增加亮度、对比度、滤镜、图片种类等新参数 浅色模式)修改图片色调做 CDN 图片适配处理,达到护眼效果 对 Core Image 技术的展望 总结全文,WWDC20 对 Core Image 技术的提升主要在三方面: 优化 CI 对视频 / 动图的支持

    45320

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用 使得读者能够对“投影技术”加速认识和理解,从而在解决具体问题的时候多一个有效方法。我第一次集中遇到需要“投影”技术解决的问题,是在“答题卡”项目中。 ? 在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?

    36120

    图像处理-图像增强

    图像增强前期知识 图像增强是图像模式识别中非常重要的图像处理过程。 图像的灰度变换也称为点运算、对比度增强或对比度拉伸,它是图像数字化软件和图像显示软件的重要组成部分。灰度变换是一种既简单又重要的技术,它能让用户改变图像数据占据的灰度范围。 频域增强技术是在数字图像的频率域空间对图像进行滤波,因此需要将图像从空间域变换到频率域,一般通过傅里叶变换实现。 图像增强的方法分类: |图像增强方法|实现方法| |-|-| |处理对象|灰度图| ||(伪)彩色图| |-|-| |处理策略|全局处理| ||局部处理(ROI ROI,Region of Interest 常用图像增强 直方图均衡化 |直方图均衡化|| |-|-| |优点|处理过亮过暗图像很有效(曝光过度或者曝光不足),刻画更多细节| ||是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图

    13010

    图像处理-图像滤波

    和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ 高斯分布:h(x,y)=e^-(\frac{x^2+y^2}{2a^2}) 双边滤波 一种非线性的滤波方法,是结合图像的空间邻近度和像素相似度的的一种折中处理 中心像素的距离和灰度差值的增大,邻域像素的权系数逐渐减小 优点:保持边缘性能良好,对低频信息滤波良好 缺点:不能处理高频信息 假设高斯函数表达式如下: W_ij=\frac{1}{K_i}e^-\frac 其中: f:待滤波图像 w:滤波模板 option1, option2:可选项 可选项分为: (1) 边界项:遍历处理边界元素时,需要提前在图像边界周围补充元素 参数:`X`--表示具体的数字,默认用 `0`补充 `symmetric`--镜像边界元素 `replicate`--重复边界像素 `circular`--周期性填充边界内容 (2) 尺寸项:处理图像前扩充了边界,比原图大一圈,此项输出图像大小 ,首先把图像通过傅里叶变换将图像从空间域转换到频率域,频域处理,反傅里叶变换转到空间域 |||| |-|-|-| |||| C++代码 均值滤波 void meanFilter (unsigned char

    10220

    图像处理-图像噪声

    图像噪声 噪声 加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。 高斯白噪声包括热噪声和散粒噪声。 椒盐噪声 定义:椒盐噪声又称为双极脉冲噪声,这种噪声表现的特点是噪声像素的灰度值与邻域像素有着明显差异,而其余像素的灰度值保持不变,因此在图像中造成过亮或过暗的像素点。 椒盐噪声严重影响图像的视觉质量,给图像的边缘检测、纹理或者特征点提取等造成困难。 Based algorithm for removal of high density impulse noises) 一般会选择先检测再滤波的思路,通过开关机制抑制噪声,上述方法对低噪声水平的椒盐噪声处理效果良好 因为基于中值的滤波方法仅考虑图像局部区域像素点的顺序阶信息,没有充分利用像素点之间的相关性或相似性。噪声像素点的估计值可能与真实值有较大偏差,很难保持图像的细节信息。

    6010

    图像处理-图像融合

    一般情况下,我们先会对不同传感器取得的各自信息及信号进行一个整合加强过程,例如图像间的配准,图像边缘增强,图像纹理平滑,抑制背景杂波等;然后我们要做的是对于融合层和融合算法的选取,不同的算法处理方式和提取特征信息的方法不同 2、对于同一目标的多源图像信号的采集。通过传感器进行目标信号采集,采集过程虽然简单,却可也不能轻视,好的采集方法可以获得更优质的信号信息,为后续的信号处理过程打下基础。 3、对于采集信号的预处理。 收集到的信号不一定直接就能用,在进行图像融合之前,对采集到的信号进行去噪、增强、配准等预处理,可以大大提高图像的对比度以及分辨率,有助于图像融合效果的进一步提高。 4、图像融合过程。 图像融合处理过程的流程框图如下: 不同的层次所进行数据处理的要求和融合算法是不一样的,需要具体问题具体分析,通常我们将图像数据分为三层,融合过程流程图如下: 图像融合层简介: 1、基于像素级的图像融合属于最基本的图像融合技术 这一层主要是直接处理图像的单像素,因为像素级是由源场景的图像最大化描述的。像素级图像融合需要对图像进行预处理,包括图像配准、滤波和增强。

    10920

    技术分享会】Python Opencv图像处理基础(上)

    图像二值化 6. 图像运算与二值运算 7. 缩放,裁剪与旋转 8. 安装与基础使用 ---- 注意:如果图像路径中存在中文,则会加载到的图像则是None,需要换一种方式: # 加载 img = cv2.imdecode(np.fromfile(path, dtype= 维度与通道 ---- 平时看起来图像是二维的,有宽和高,但是实际上,图像是三维的(指的是数据结构): 高度和宽度比较好理解,对应的就是一个像素,但是一个像素通常不是一个单一的值,例如对于普通的彩色图像 颜色空间 颜色空间是图像处理中比较重要的概念,也是比较复杂的概念,具体可以看这个文章https://zhuanlan.zhihu.com/p/112790325。 上面这个图可以清晰地看到对于普通的三通道的图像,一个像素点是包含三个值的。 待续。。。。。。

    14010

    AI技术图像水印处理中的应用

    作者简介:李翔,国内某互联网大厂AI民工,前携程酒店图像技术负责人,主导并参与一系列图像智能化算法的研发与落地工作。在ICCV和CVPR等学术会议及国际期刊上发表论文十余篇。 在这里我们和大家分享一下业余期间在水印智能化处理上的一些实践和探索,希望可以帮助大家在更好地做到对他人图像版权保护的同时,也能更好地防止自己的图像被他人滥用。 接下来我们将会围绕上述两种大家常见的做法展开,首先介绍如何利用深度学习技术快速搭建一个水印检测器,实现水印的自动检测,同时我们还会进一步展示在水印检测的基础上如何利用深度学习技术设计一个水印去除器,自动将图像上的水印去除 全卷积网络的输入是带水印的图像区域,经过多层卷积处理后输出无水印的图像区域,我们希望网络输出的无水印图像能够和原始的无水印图像尽可能的接近。 ? 写在最后 针对水印的各种处理一直是研究的热点,也吸引了越来越多的关注。本文介绍了如何通过当前流行的深度学习技术来搭建水印的检测器和去除器,实现对水印的智能处理

    32110

    如何利用深度学习技术处理图像水印?

    作者 | 李翔 转载自公众号视说AI(ID: techtalkai) 作者简介:李翔,国内某互联网大厂AI民工,前携程酒店图像技术负责人,主导并参与一系列图像智能化算法的研发与落地工作。 在这里我们和大家分享一下业余期间在水印智能化处理上的一些实践和探索,希望可以帮助大家在更好地做到对他人图像版权保护的同时,也能更好地防止自己的图像被他人滥用。 接下来我们将会围绕上述两种大家常见的做法展开,首先介绍如何利用深度学习技术快速搭建一个水印检测器,实现水印的自动检测,同时我们还会进一步展示在水印检测的基础上如何利用深度学习技术设计一个水印去除器,自动将图像上的水印去除 全卷积网络的输入是带水印的图像区域,经过多层卷积处理后输出无水印的图像区域,我们希望网络输出的无水印图像能够和原始的无水印图像尽可能的接近。 ? 写在最后 针对水印的各种处理一直是研究的热点,也吸引了越来越多的关注。本文介绍了如何通过当前流行的深度学习技术来搭建水印的检测器和去除器,实现对水印的智能处理

    53320

    PHP图像处理技术实例总结【绘图、水印、验证码、图像压缩】

    本文实例总结了PHP图像处理技术。 分享给大家供大家参考,具体如下: 1、绘图 场景: 验证码、图像水印、图像压缩处理 php绘图坐标体系是从0,0点越向右值越大,越向下值越大 需要开启php的gd2扩展 php.ini 中 参数1:图像资源 对图像进行压 缩处理非常简单,因为就一个函数 参数1:目标图像资源(画布) 参数2:等待压缩图像资源 参数3:目标点的x坐标 参数4:目标点的y坐标 参数5:原图的x坐标 参数6:原图的y坐标 参数7 php /* * 图像压缩处理类 */ class Thumb { private $_filename; //等待压缩的图像 private $_thumb_path = 'thumb file_exists($file)){ echo '文件有误,不能压缩'; return; } $this -> _filename = $file; } //图像压缩处理

    11520

    基于图像文字识别技术处理文本按钮

    前言 在之前的基于vision-ml模型训练框架改造以及实际场景应用识别弹窗,我们基于模型训练去处理我们的弹窗,但是呢,在一些界面弹窗是一样的,但是,文字是不一样的,那么我们呢怎么根据文字的不同去处理不同的弹窗呢 正文 我们的需求是处理文案不同但是弹窗类型相似,很多人都想到来ocr,那么对于ocr来说,有商业化的。但是也有开源的,那么我们基于免费的开源的去改造即可。 那么我们可以把这个功能封装成我们处理一些安装的时候出现的文本弹窗,把文字统一存储起来。 准备了一些文本。 这里我们可以做成在我们安装app过程中处理安装权限弹窗和安装过程中的各种文本弹窗去解决我们的实际的问题。 基于模型避免了一些手机上按钮的样式会发生改变,使用坐标的方式来处理。后续会把这个的代码放在appium相关的分享中去做展示。我改造的部分的代码已经全部贴上去了。需要原框架的部分代码也已经做了截屏。

    14020

    技术分享会】Python Opencv图像处理基础(下)

    图像二值化 6. 图像运算与二值运算 7. 缩放,裁剪与旋转 8. 图像二值化 灰度图是通道数为1的图像,每个像素点的值的取值范围是0-255(np.uint8),白色为255,黑色为0,中间的取值为灰色。不过有时只有灰度图还不够,还需要处理成只有黑白两种颜色的图像。 在opencv中处理成二值图像的方法有好几个,具体网上有很多现成的文章,如:https://blog.csdn.net/bugang4663/article/details/109589177 上图所示的方法 5.2 大津阈值法 根据双峰图像图像直方图自动计算阈值(大津阈值法这个名字有点奇怪)。 灵活使用布尔运算可以实现很多的功能,例如表格横线图像和纵线图像做bitwise_and运算,就能得到交点的图像。 7.

    18330

    matlab 医学图像处理(matlab进行图像处理)

    图像文件增加椒盐噪声,然后进行中值滤波 Y=imread(‘D:\321.jpg’);%读入图像 I=rgb2gray(Y);%转换成灰度图 J =imnoise(I,‘salt & pepper’, 0.02);%给图像添加椒盐噪声 K =medfilt2(J);%对增加噪声后的图像进行中值滤波 subplot(2,2,1); imshow(I); title(‘原图’);%显示图像,并命名‘原图’ subplot(2,2,2); imshow(J); title(‘加噪声后’);%显示图像,并命名‘加噪声后’ subplot(2,2,3); imshow(K); title(‘加噪中值滤波后’) ;%显示图像,并命名‘加噪中值滤波后’ 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/126043.html原文链接:https://javaforall.cn

    6220

    PHP图像处理技术实例总结【绘图、水印、验证码、图像压缩】

    本文实例总结了PHP图像处理技术。 分享给大家供大家参考,具体如下: 1、绘图 场景: 验证码、图像水印、图像压缩处理 php绘图坐标体系是从0,0点越向右值越大,越向下值越大 需要开启php的gd2扩展 php.ini 中 参数1:图像资源 对图像进行压 缩处理非常简单,因为就一个函数 参数1:目标图像资源(画布) 参数2:等待压缩图像资源 参数3:目标点的x坐标 参数4:目标点的y坐标 参数5:原图的x坐标 参数6:原图的y坐标 php /* * 图像压缩处理类 */ class Thumb { private $_filename; //等待压缩的图像 private $_thumb_path = 'thumb/'; file_exists($file)){ echo '文件有误,不能压缩'; return; } $this - _filename = $file; } //图像压缩处理 function makeThumb

    19320

    图像处理-图像去雾

    图像处理-图像去雾 雾图模型 I(x)=J(x)t(x)+A(1-t(x)) I(x) ——待去雾的图像 J(x)——无雾图像 A——全球大气光成分 t——折射率(大气传递系数) 暗通道先验 在无雾图像中 总之,自然景物中到处都是阴影或者彩色,这些景物的图像的暗原色总是很灰暗的。 首先求出每个像素RGB分量中的最小值,存入一副和原始图像大小相同的灰度图中,然后再对这幅灰度图进行最小值滤波(邻域中取最小值) 验证了暗通道先验理论的普遍性 计算折射率 t(x)=1-wmin(minI (y)/A) 估计大气光 1.选取暗通道图像暗通道最亮的0.1%的像素(一般来说,这些像素表示雾浓度最大的地方) 2.取输入图像里面这些像素对应的像素里面最亮的作为大气光 (暗图像最亮的0.1%的像素对应的原图最亮的为大气光 去雾 J(x)=I(x)-A/max(t(x),t0) +A t0=0.1 流程: 1.求图像暗通道 2.利用暗通道计算出折射率 3.利用暗通道估计大气光 4.代回雾图公式去雾 我的代码-图像去雾算法Matlab

    12120

    图像处理-Retinex图像增强

    图像处理_Retinex图像增强 单尺度SSR (Single Scale Retinex) 图像S(x,y)分解为两个不同的图像:反射图像R(x,y),入射图像L(x,y) 图像可以看做是入射图像和反射图像构成 而L(x, y)表示入射光图像,决定了图像像素能达到的动态范围,我们应该尽量去除。 我们把照射图像假设估计为空间平滑图像,原始图像为S(x, y),反射图像为R(x, y),亮度图像为L(x, y),使用公式 r(x,y)=logR(x,y)=log\frac{S(x,y)}{L(x, 、全局动态范围压缩,也可以用于X光图像增强。 处理后的图像局部对比度提高,亮度与真实场景相似,在人们视觉感知下,图像显得更加逼真。 参考文章

    19710

    图像处理-图像插值

    这种放大图像的方法叫做最临近插值算法,这是一种最基本、最简单的图像缩放算法,效果也是最不好的,放大后的图像有很严重的马赛克,缩小后的图像有很严重的失真;效果不好的根源就是其简单的最临近插值方法引入了严重的图像失真 2,双线性二次插值 3、三次内插法 内插值,外插值 两张图像混合时通过内插与外插值方法可以实现图像亮度、对比度、饱和度、填色、锐化等常见的图像处理操作。 外插值方法:可以用来生成跟内插值效果相反的图像。 比如内插值模糊图像,通过外插值可以去模糊,外插值可以调节饱和度,可以实现图像一些列的处理比如亮度、饱和度、对比度、锐化调整。 自适应的方法可以根据插值的内容来改变(尖锐的边缘或者是平滑的纹理),非自适应的方法对所有的像素点都进行同样的处理。 双三次产生的图像比前两次的尖锐,有理想的处理时间和输出质量。因此,在很多图像编辑程序中是标准算法 (包括 Adobe Photoshop), 打印机和相机插值。

    9510

    相关产品

    • 图像分析

      图像分析

      腾讯云图像分析基于深度学习等人工智能技术,提供综合性图像理解、图像处理、图像质量评估等服务,包含图像标签、logo识别、动漫人物识别、植物识别等,可以用于智能相册、视频理解、AI营销等场景…..

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券