疫情期间,我们在GitHub上搜索TensorFlow预训练模型,发现了一个包含25个物体检测预训练模型的库,并且这些预训练模型中包含其性能和速度指标。结合一定的计算机视觉知识,使用其中的模型来构建社交距离程序会很有趣。
【新智元导读】 Learning OpenCV 3 Application Development 一书的作者 Samyak Datta 在一次专访中解答了初学者对计算机视觉领域的一系列疑问,他的阐释在一定程度上勾勒了整个领域的鸟瞰图。 计算机视觉、机器学习和神经网络成为了计算机科学领域最受瞩目、研究最多的课题。我们很幸运地与Samyak Datta 进行了交流,他是“Learning OpenCV 3 Application Development”一书的作者。Samyak 今年秋天将进入佐治亚理工学校的
上面这副图就是我们今天要处理的了,我们想把它从拍照视角变成鸟瞰图,这是机器人导航中的常用手段,以便在该平面上进行规划和导航。
A. Geometric alignment stage 几何对齐阶段 首先进行离线相机标定,基于文献【9】中算法,使用鱼眼相机拍摄标定棋盘,然后计算相机的内外参数 ,基于得到的相机参数,对图像进行校正
我们常常会在停车场周围四处行驶很多次来寻找一个停车位,如果我们的电话可以准确告诉我们最近的停车位在哪里,那是不是很方便!
文章:Monocular Localization with Semantics Map for Autonomous Vehicles
公众号致力于分享点云处理,SLAM,三维视觉,高精地图相关的文章与技术,欢迎各位加入我们,一起每交流一起进步,有兴趣的可联系微信:920177957。本文来自点云PCL博主的分享,未经作者允许请勿转载,欢迎各位同学积极分享和交流。
文章:Hybrid Bird’s-Eye Edge Based Semantic Visual SLAM for Automated Valet Parking
所有人在开车时都要注意识别车道,确保车辆行驶时在车道的限制范围内,保证交通顺畅,并尽量减少与附近车道上其他车辆相撞的几率。对于自动驾驶车辆来说,这是一个关键任务。事实证明,使用计算机视觉技术可以识别道路上的车道标记。我们将介绍如何使用各种技术来识别和绘制车道的内部,计算车道的曲率,甚至估计车辆相对于车道中心的位置。 为了检测和绘制一个多边形(采用汽车当前所在车道的形状),我们构建了一个管道,由以下步骤组成: 一组棋盘图像的摄像机标定矩阵和畸变系数的计算 图像失真去除; 在车道线路上应用颜色和梯度阈值; 通过
文章:M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Bird’s-Eye View Representation
前面总结了几种基于激光雷达点云数据的3D目标检测算法,还有一些算法不再单独列出,这里做个简单总结来分享下!
今天我们来看一篇点云目标检测方面的文章——MV3D,下面是作者提供的Demo演示。
在这个项目中,我使用 Python 和 OpenCV 构建了一个 pipeline 来检测车道线。这个 pipeline 包含以下步骤:
计算机视觉在自动化系统观测环境、预测该系统控制器输入值等方面起着至关重要的作用。本文介绍了使用计算机视觉技术进行车道检测的过程,并引导我们完成识别车道区域、计算道路RoC 和估计车道中心距离的步骤。
标题:Efficient LiDAR Odometry for Autonomous Driving
靠一个摄像头拍下的图像做3D目标检测,究竟有多难?目前最先进系统的成绩也不及用激光雷达做出来的1/10。
文章:AVM-SLAM: Semantic Visual SLAM with Multi-Sensor Fusion in a Bird’s Eye View for Automated Valet Parking
介绍一篇今年的车道线检测论文 SUPER: A Novel Lane Detection System,作者来自密歇根大学和SF Motors 公司。
文章:Fisheye Camera and Ultrasonic Sensor Fusion For Near-Field Obstacle Perception in Bird’s-Eye-View
在这篇文章中,我将介绍如何从视频中查找并标记车道。被标记的车道会显示到视频上,并得到当前路面的曲率以及车辆在该车道内的位置。首先我们需要对图像进行相机失真校正,这里就不作详细介绍了。我们的关键任务是识别图片中属于车道的像素,为此我们使用了“颜色阈值”的概念。
苹果进军自动驾驶汽车的传闻由来已久,最新的传闻是苹果已经搁置了整车研发的计划,转而开发自动驾驶汽车的软件平台。最近,也有不少路人在苹果总部附近看到过苹果的雷克萨斯路测车。 近日,向来以保密闻名的苹果发表在arXiv上的一篇论文又泄露了其无人车项目的最新进展。这篇论文的主题是“VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection”,作者为Yin Zhou(领英资料显示,Yin Zhou本科毕业于北京交通大学,2015
来源:Deephub Imba本文约1800字,建议阅读5分钟本篇文章将介绍如何将赛道的图像转换为语义分割后鸟瞰图的轨迹。 本篇文章将介绍如何将赛道的图像转换为语义分割后鸟瞰图的轨迹。 如下所示,输入图像为: 输出: 总结来说我们的任务是获取输入图像,即前方轨道的前置摄像头视图,并构建一个鸟瞰轨道视图,而鸟瞰轨道视图会分割不同的颜色表示赛道和路面的边界。 仅仅从输入图像中提取出关于走向的信息是相当困难的,因为未来的许多轨道信息被压缩到图像的前20个像素行中。鸟瞰摄像头能够以更清晰的格式表达关于前方赛道的
【导读】上周,我们在《激光雷达,马斯克看不上,却又无可替代?》一文中对自动驾驶中广泛使用的激光雷达进行了简单的科普,今天,这篇文章将各大公司和机构基于激光雷达的目标检测工作进行了列举和整合。由于文章列举方法太多,故作者将其分成上下两部分,本文为第一部分。
第1级,APA 自动泊车:驾驶员在车内,随时准备制动,分为雷达感知和雷达+视觉感知两种方式。
标题:PointPillars: Fast Encoders for Object Detection from Point Clouds
移动机器人,如自动驾驶车辆,严重依赖于对其环境的准确和健壮的感知。因此,机器人平台通常配备有各种传感器[1, 2, 3],每种传感器提供互补的信息。例如,环视摄像头提供密集的RGB图像,而激光雷达或雷达系统提供稀疏的深度测量。然而,由于这些不同模态的数据结构本质上的不同,融合这些数据提出了一个重大挑战。解决这一挑战的常用方法是采用鸟瞰视图(BEV)表示作为共享参考框架[4, 5, 6, 7, 8, 9]。
总结来说我们的任务是获取输入图像,即前方轨道的前置摄像头视图,并构建一个鸟瞰轨道视图,而鸟瞰轨道视图会分割不同的颜色表示赛道和路面的边界。
技术解析是由美团点评无人配送部技术团队主笔,每期发布一篇无人配送领域相关技术解析或应用实例,上期我们讲了激光雷达相关原理和非深度学习的目标检测算法,这一期我们来讲讲基于深度学习相关算法
基于鸟瞰图的方法:MV3D将Li-DAR点云投射到鸟瞰图上,并为3D边界框proposal训练一个region proposal网络(RPN)。 然而,该方法在检测诸如行人和骑车人等小物体方面滞后,并且不能容易地适应具有垂直方向上的多个物体的场景。AVOD同样利用点云投影数据,克服了上述缺点。在KITTI竞赛的排行榜上目前排名第2.
文章:Ground-VIO: Monocular Visual-Inertial Odometry with Online Calibration of Camera-Ground Geometric Parameters
目标检测任务的目标是找到图像中的所有感兴趣区域,并确定这些区域的位置和类别。由于目标具有许多不同的外观、形状和姿态,再加上光线、遮挡和成像过程中其它因素的干扰,目标检测一直以来都是计算机视觉领域中一大挑战性难题。
文章:Simple-BEV: What Really Matters for Multi-Sensor BEV Perception? 作者:Adam W. Harley , Zhaoyuan Fan
项目地址:https://github.com/ika-rwth-aachen/Cam2BEV
最近几年点云的三维目标检测一直很火,从早期的PointNet、PointNet++,到体素网格的VoxelNet,后来大家觉得三维卷积过于耗时,又推出了Complex-yolo等模型把点云投影到二维平面,用图像的方法做目标检测,从而加速网络推理。
三维目标检测是自动驾驶系统的一个关键组成部分,旨在准确识别和定位汽车、行人以及三维环境中的其他元素[49, 58]。为了鲁棒和高品质的检测,当前的实践主要遵循像BEVFusion[29, 34]这样的多模态融合范式。不同的模态通常提供互补的信息。例如,图像含有丰富的语义表示,但缺乏深度信息。相比之下,点云提供了几何和深度信息,但却是稀疏的且缺乏语义信息。因此,有效利用多模态数据的优势同时减轻其局限性,对于提高感知系统的鲁棒性和准确性至关重要[58]。
计算机视觉现在很流行,世界各地的人们都在从事某种形式的基于深度学习的计算机视觉项目。但在深度学习出现之前,图像处理技术已被用来处理和转换图像,以获得有助于我们完成任务的见解。今天,让我们看看如何实现一种简单而有用的技术,即透视投影来扭曲图像。
激光雷达成本高,用廉价的立体视觉替代它可行吗? 作者:Jeremy Cohen 编译:McGL
文章:LaneLoc: Lane Marking based Localization using Highly Accurate Maps
今天和大家分享工作的是自动驾驶中高精度语义地图的动态构建。内容主要是解读我们组最新的论文HDMapNet: A Local Semantic Map Learning and Evaluation Framework。
转载自丨3d tof 原文地址:在OpenCV中基于深度学习的边缘检测 推荐阅读:普通段位玩家的CV算法岗上岸之路(2023届秋招)
文章:Online Camera-to-ground Calibration for Autonomous Driving
本文还是在传统机器视觉的基础上讨论单目测距,深度学习直接估计深度图不属于这个议题,主要通过mobileye的论文管中窥豹,相信离实际工程应用还有很远。
代码已开源: https://github.com/JoestarK/LiDAR-Iris
第三章 第二个七天阅读训练 阅读是易事,思索是难事,但两者缺一,便全无用处。——富兰克林 ---- 如何阅读,轻松进入别人的话题 虽然我的读书风格是广泛大量地阅读,但如果在满员的电车上发现了动人心弦的句子,我就会直接在书本上标记,然后再让秘书记录在文字处理机(当时)上,这让我成功地从书本的世界中获得了不少积累 ---- 如何阅读,建立未来规划 当读书渐渐变成了我生活的一部分,我的内心发生了某种变化——我变得能看到“人生鸟瞰图”了 通过读书,我的大脑和越来越多的人的大脑碎片相结合,鸟瞰图才出现的,这个说法比较
车道线检测算法分为传统图像处理方法和深度学习方法。本文详细介绍用传统图像处理方法来解决车道线检测问题,后文的算法源于Udacity无人驾驶课程的项目(https://www.udacity.com/),仅做参考。
车道线检测是自动驾驶与计算机视觉领域中的重要研究方向,3D车道线任务更是近几年的研究热点,下面为大家盘点下近三年的一些工作!
HousingMaps把鸟瞰图和当地房地产数据相结合显示,效果非常吸引人,而且是免费的服务。这家公司同时向个人用户和商业用户提供卫星地图和鸟瞰图。他另一向别具特色的服务是Property Analyst ,主要为专业人士提供服务。全球华人房地产门户搜房网也密切关注这个领域,近期由租房二手房集团推出了 http://pinggu.soufun.com 搜房评估。
机器之心报道 编辑:蛋酱 来自萨里大学的研究者引入了注意力机制,将自动驾驶的 2D 图像转换为鸟瞰图,使得模型的识别准确率提升了 15%,并斩获了 ICRA 2022 的杰出论文奖。 对于自动驾驶中的许多任务来说,从自上而下、地图或鸟瞰 (BEV) 几个角度去看会更容易完成。由于许多自动驾驶主题被限制在地平面,所以俯视图是一种更实用的低维表征,对于导航也更加理想,能够捕获相关障碍和危险。对于像自主驾驶这样的场景,语义分割的 BEV 地图必须作为瞬时估计生成,以处理自由移动的对象和只访问一次的场景。 要想从
领取专属 10元无门槛券
手把手带您无忧上云