首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks

对于许多任务来说,收集注释良好的图像数据集来训练现代机器学习算法的成本高得令人望而却步。一个吸引人的替代方案是渲染合成数据,其中地面实况注释是自动生成的。不幸的是,纯基于渲染图像训练的模型往往无法推广到真实图像。为了解决这一缺点,先前的工作引入了无监督的领域自适应算法,该算法试图在两个领域之间映射表示或学习提取领域不变的特征。在这项工作中,我们提出了一种新的方法,以无监督的方式学习像素空间中从一个域到另一个域的转换。我们基于生成对抗性网络(GAN)的模型使源域图像看起来像是从目标域绘制的。我们的方法不仅产生了合理的样本,而且在许多无监督的领域自适应场景中以很大的优势优于最先进的方法。最后,我们证明了适应过程可以推广到训练过程中看不到的目标类。

04

Source-Free Domain Adaptation for Semantic Segmentation

无监督域自适应(UDA)可以解决基于卷积神经网络(CNN)的语义分割方法严重依赖于像素级注释数据的挑战,这是劳动密集型的。然而,这方面现有的UDA方法不可避免地需要完全访问源数据集,以减少模型自适应过程中源域和目标域之间的差距,这在源数据集是私有的真实场景中是不切实际的,因此无法与训练有素的源模型一起发布。为了解决这个问题,我们提出了一种用于语义分割的无源领域自适应框架,即SFDA,其中只有经过训练的源模型和未标记的目标领域数据集可用于自适应。SFDA不仅能够在模型自适应过程中通过知识转移从源模型中恢复和保存源领域知识,而且能够从目标领域中提取有价值的信息用于自监督学习。为语义分割量身定制的像素级和补丁级优化目标在框架中无缝集成。在众多基准数据集上的广泛实验结果突出了我们的框架相对于依赖源数据的现有UDA方法的有效性。

03

Progressive Domain Adaptation for Object Detection

最近用于对象检测的深度学习方法依赖于大量的边界框注释。收集这些注释既费力又昂贵,但当对来自不同分布的图像进行测试时,监督模型并不能很好地推广。领域自适应通过使现有标签适应目标测试数据来提供解决方案。然而,领域之间的巨大差距可能会使适应成为一项具有挑战性的任务,从而导致不稳定的训练过程和次优结果。在本文中,我们建议用一个中间域来弥合领域差距,并逐步解决更容易的适应子任务。该中间域是通过平移源图像以模仿目标域中的图像来构建的。为了解决领域转移问题,我们采用对抗性学习来在特征级别对齐分布。此外,应用加权任务损失来处理中间域中的不平衡图像质量。 实验结果表明,我们的方法在目标域上的性能优于最先进的方法。

03

Cross-Domain Car Detection Using UnsupervisedImage-to-Image Translation: From Day to Night

深度学习技术使最先进的模型得以出现,以解决对象检测任务。然而,这些技术是数据驱动的,将准确性委托给训练数据集,训练数据集必须与目标任务中的图像相似。数据集的获取涉及注释图像,这是一个艰巨而昂贵的过程,通常需要时间和手动操作。因此,当应用程序的目标域没有可用的注释数据集时,就会出现一个具有挑战性的场景,使得在这种情况下的任务依赖于不同域的训练数据集。共享这个问题,物体检测是自动驾驶汽车的一项重要任务,在自动驾驶汽车中,大量的驾驶场景产生了几个应用领域,需要为训练过程提供注释数据。在这项工作中,提出了一种使用来自源域(白天图像)的注释数据训练汽车检测系统的方法,而不需要目标域(夜间图像)的图像注释。 为此,探索了一个基于生成对抗网络(GANs)的模型,以实现生成具有相应注释的人工数据集。人工数据集(假数据集)是将图像从白天时域转换到晚上时域而创建的。伪数据集仅包括目标域的注释图像(夜间图像),然后用于训练汽车检测器模型。实验结果表明,所提出的方法实现了显著和一致的改进,包括与仅使用可用注释数据(即日图像)的训练相比,检测性能提高了10%以上。

02
领券