展开

关键词

图像到知识:深度神经网络实现图像理解的原理解

3 卷积神经网络与图像理解 卷积神经网络(CNN)通常被用来张量形式的输入,例如一张彩色图象对应三个二维矩阵,分别表示在三个颜色通道的像素强度。 图 4 卷积神经网络与图像理解 事实上有研究表明无论识别什么样的图像,前几个卷积层中的卷积核都相差不大,原因在于它们的作用都是匹配一些简单的边缘。 RNN和CNN可以结合起来,形成对图像的更全面准确的理解。 首先通过卷积神经网络(CNN)理解原始图像,并把它转换为语义的分布式表示。然后,递归神经网络(RNN)会把这种高级表示转换成为自然语言。 我们期待未来大部分关于图像理解的进步来自于训练端到端的模型,并且将常规的CNN和使用了强化学习的RNN结合起来,实现更好的聚焦机制。

65690

理解图像卷积操作的意义

数字图像处理中卷积 数字图像是一个二维的离散信号,对数字图像做卷积操作其实就是利用卷积核(卷积模板)在图像上滑动,将图像点上的像素灰度值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素对应的图像上像素的灰度值 3)如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。 以上四种边界补充方法通过看名字和图片就能理解了,不在多做解释。 该卷积利用的其实是图像中的边缘信息有着比周围像素更高的对比度,而经过卷积之后进一步增强了这种对比度,从而使图像显得棱角分明、画面清晰,起到锐化图像的效果。 ? 第二个参数: 输出图像,和输入图像具有相同的尺寸和通道数量 第三个参数: 目标图像深度,输入值为-1时,目标图像和原图像深度保持一致。

2.3K71
  • 广告
    关闭

    腾讯云+社区系列公开课上线啦!

    Vite学习指南,基于腾讯云Webify部署项目。

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    全卷积网络:从图像理解到像素级理解

    卷积神经网络(CNN):图像级语义理解的利器 自2012年AlexNet提出并刷新了当年ImageNet物体分类竞赛的世界纪录以来,CNN在物体分类、人脸识别、图像检索等方面已经取得了令人瞩目的成就。 以AlexNet为代表的经典CNN结构适合于图像级的分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述, 比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率 全卷积网络:从图像理解到像素级理解 与物体分类要建立图像理解任务不同的是,有些应用场景下要得到图像像素级别的分类结果,例如:1)语义级别图像分割(semantic image segmentation 以语义图像分割为例,其目的是将图像分割为若干个区域, 使得语义相同的像素被分割在同意区域内。下图是一个语义图像分割的例子, 输入图像, 输出的不同颜色的分割区域表示不同的语义:背景、人和马。 针对语义分割和边缘检测问题,经典的做法就是以某个像素点为中心取一个图像块, 然后取图像块的特征作为样本去训练分类器。

    1.1K80

    深度学习视频理解图像分类

    视频理解旨在通过智能分析技术,自动化地对视频中的内容进行识别和解析。视频理解算法顺应了这个时代的需求。因此,近年来受到了广泛关注,取得了快速发展。 图像分类(Image Classification)是视频理解的基础,视频可以看作是由一组图像帧(Frame)按时间顺序排列而成的数据结构,RNN(Recurrent Neural Networks,循环神经网络 ,可以简洁、直观地对其中的原理进行理解与分析。 LSTM中对各维是独立进行门控的,所以为了表示和理解方便,我们只需要考虑一维情况,在理解 LSTM 原理之后,将一维推广到多维是很直接的。 Detection),是视频理解的另一个重要领域。

    23040

    图像内容的「深度」理解及其应用

    本科期间参与北京大学智能车环境感知项目,基于 LIDAR 的图像理解工作发表在机器人顶级会议上。2015 年底加入腾讯,在 TEG 内部搜索部工程平台中心参与深度学习平台的开发与应用。 PC 时代的键鼠,带来了文字输入;移动设备的普及,使得语音和图像更易获取。摄像头带来了海量的图像和视频,在许多场景下,这些数据极具检索价值。 相比理解文字或一维信号语音来说,图像理解更具挑战。怎样从图像中提取有价值的信息,一直是计算机视觉所要解决的重要问题。 内搜在文字处理和搜索上浸淫多年,在 AI 领域的积累,始于文字,又不止于文字,面对新的图像场景,再次起航,开发了一套基于兴趣区域理解图像垂直检索框架。 它需要部门在图像理解,检索系统,机器学习系统上提供强有力的支撑。 1. 针对索引主体确立,我们开发了一套完整的 ROI Detection 算法;2.

    1.3K63

    秒杀】二、what?秒杀也可以做引擎?

    从上次在技术交流群里聊到秒杀系统的设计,到目前为止已经招募到8位对其非常感兴趣的小伙伴,主笔编码。经过大家的讨论,感觉除了做成一个秒杀的demo,我们还可以更近一步,将其做成一个秒杀引擎。 【秒杀】一、系统设计要点,从卖病鹅说起 一个黑盒 最主要的思路,就是把秒杀引擎看成是一个黑盒,对完成秒杀的逻辑进行屏蔽。一端输入,一端输出。 也就是说,你把要秒杀的数据,经过清洗倒入秒杀引擎后,剩下的就没原来系统的什么事了。 “精致秒杀引擎,云加速,弹性可伸缩高可用架构。SLA全年5个9,绿色无公害,为您的业务保驾护航。 这样,通过配置参数,就可以调节秒杀队列的行为和性能。 source 秒杀数据源 数据的提供者。 source和sink,组成了一个秒杀目标的具体数据流向,是黑盒之外的东西。 target 秒杀目标 是时候给秒杀目标起个名字了。

    20020

    秒杀系统】秒杀系统和拓展优化

    秒杀一般是访问请求数量远远大于库存数量,只有少部分用户能够秒杀成功。 秒杀业务流程比较简单,一般就是下订单减库存。 问题分析 秒杀系统一般要注意的问题就是 : 库存少卖,超卖问题(原子性) 流量削峰,这里我们设定的时候每个用户只能秒杀一次所以比较好处理 执行流程 初始化数据,提前预热要秒杀的商品(项目里设置为启动 ,如果秒杀列表有就预热) 使用 redis 缓存秒杀的商品信息,使用redis来承担秒杀的压力最后生产秒杀到的用户,再到mysql生成订单 在秒杀时使用(事务,分布式锁两种方式都实现)对商品库存,保证原子性 : id 商品id 秒杀开始时间 秒杀结束时间 秒杀价 可秒杀的数量 订单表 id 订单id 商品id 秒杀价格 用户id 地址 电话 sql表 CREATE DATABASE /*! 这里才是我们的重头戏这里我们主要讲解使用思路,不过多的去展示无用代码如实体类等,我们这里从最开始的 直接处理 redis 事务处理 分布式锁 Lua处理 三种方式 由浅至深的来理解秒杀的思路和超卖问题的解决

    6720

    图像理解--Detecting and Recognizing Human-Object Interactions

    Detecting and Recognizing Human-Object Interactions https://arxiv.org/abs/1704.07333 大牛们已经从图像的检测分割向图像理解的研究方向过渡了 本文主要关注图像中的 人 和 物体的关系检测和识别,这种关系可以用一个三元素 《human, verb, object》 来描述,这里我们提出一个 human-centric model 来检测人和物的关系

    57320

    使用NTS理解细粒度图像分类

    这个博客是为了理解细粒度视觉分类(FGVC)这一具有挑战性的问题,下面的文章将对此进行详细描述。 有关Pytorch代码实现,请参考以下github库:https://github.com/yangze0930/NTS-Net 在这个过程中,人们可以理解最初可能面临的挑战,以及如何使用本文有趣的架构从刚开始时的 对于像我这样的初学者来说,理解一个复杂问题的工作代码并获得正确的见解是非常有帮助的。 好了,这个问题前面已经有了答案,所以请耐心等待我来理解每个agent的高级功能。 RAW LOSS:这是针对RESNET网络参数的图像分类的分类交叉熵损失。我们对原始图像的特征进行raw loss,然后将其与我们的建议区域图像的特征结合进行细粒度分类。这里的输出是图像的标签。

    66820

    课程笔记4--图像K空间理解

    K空间的数据分布实际上是图像空间中数据的二维傅立叶变换结果。 K空间中的数据点和图像空间中的数据点并不是一一对应的。一个K空间中的数据点对应了图像空间中所有数据点的一部分信息。 事实上,K空间中的数据正是图像空间中的数据作二维傅立叶变换的结果(图1),也就是说,我们的“大脑图像”可以被看作是由一系列频率、相位、方向各异的二维正弦波叠加而成的,而K空间的数据正表示了图像的正弦波组成 因此,为了理解如何从K空间中的数据变换得到图像空间中的数据,我们必须首先理解傅立叶变换。 ? 为了方便理解,我们首先从一维傅立叶变换说起。 K空间就好比图2中的右图一样,代表了图像空间中正弦波成分的频率分布。 ? 为了更好地理解K空间中数据的含义,我们不妨做几个思想实验。 K空间中有多少数据点,图像空间中也就能还原出多少个数据点;K空间中有越多的数据点,图像的空间分辨率也就越好。图6给出了几个K空间数据点个数语图像空间中图像分辨率的关系。

    85730

    秒杀聊聊秒杀限流的多种实现

    两周前秒杀案例初步成型,分享到了中国最大的同性交友网站-码云。同时也收到了不少小伙伴的建议和投诉。 在开发秒杀系统案例的过程中,前面主要分享了队列、缓存、锁和分布式锁以及静态化等等。 对此,为了减少资源浪费,减轻后端压力,我们还需要对秒杀进行限流,只需保障部分用户服务正常即可。 背影有没有很熟悉,对这就是那个直呼理解万岁老罗,2015年老罗在锤子科技T2发布会上将门票收入捐赠给了 OpenResty,也相信老罗是个有情怀的胖子。 限制接口总并发数/请求数 秒杀活动中,由于突发流量暴增,有可能会影响整个系统的稳定性从而造成崩溃,这时候我们就要限制秒杀接口的总并发数/请求数。

    76120

    秒杀安全

    秒杀和抢购的场景,流量往往是超乎我们系统的准备和想象的。这个时候,过载保护是必要的。如果检测到系统满负载状态,拒绝请求也是一种保护措施。 秒杀和抢购的场景中,还有另外一个问题,就是“超发”,如果在这方面控制不慎,会产生发送过多的情况。我们也曾经听说过,某些电商搞抢购活动,买家成功拍下后,商家却不承认订单有效,拒绝发货。

    46650

    【高并发】高并发秒杀系统架构解密,不是所有的秒杀都是秒杀

    秒杀三阶段 通常,从秒杀开始到结束,往往会经历三个阶段: 准备阶段:这个阶段也叫作系统预热阶段,此时会提前预热秒杀系统的业务数据,往往这个时候,用户会不断刷新秒杀页面,来查看秒杀活动是否已经开始。 注:图片来自魅族 秒杀系统时序图 网上很多的秒杀系统和对秒杀系统的解决方案,并不是真正的秒杀系统,他们采用的只是同步处理请求的方案,一旦并发量真的上来了,他们所谓的秒杀系统的性能会急剧下降。 (6)计算秒杀的价格 由于在秒杀活动中,商品的秒杀价格和商品的真实价格存在差异,所以,需要计算商品的秒杀价格。 (3)扣减缓存中的秒杀商品的库存数量。 (4)生成秒杀Token,这个Token是绑定当前用户和当前秒杀活动的,只有生成了秒杀Token的请求才有资格进行秒杀活动。 4.秒杀结算 (1)验证下单Token 客户端提交秒杀结算时,会将秒杀Token一同提交到服务器,商城服务会验证当前的秒杀Token是否有效。

    19110

    秒杀”心得

    本文记录对某网站A的秒杀活动编写秒杀器的经历和技术重点。 故事回顾     某日早上,朋友给我说最近A网站在开展秒杀活动,有IPad、IPhone,让大家一起去秒杀。 然后下午我就开始尝试分析它网站的秒杀流程,并尝试使用自动提交数据的方案来进行秒杀。 结果,在晚上的时候,成功做出了第一个版本的秒杀器,然后我们一起秒杀了几个IPad(大家都想要IPad,而对IPhone没兴趣,汗)。     当时就用网银付了帐,等待它发货。 ,随机出现各种题目让会员回答,回答成功才能继续秒杀。 元旦也没闲着,花了几天时间,改出了第二个版本的秒杀器,智能解题。经测试,目前没有失败过。 第一版本     以下简明扼要地描述所有的分析流程:     分析网站秒杀流程,得出“入口页面”的地址。

    66190

    图像滤波常用算法实现及原理解

    那么如何理解双边滤波呢 高斯滤波的滤波核的意义是,滤波后的像素值等于窗口内的像素值的加权平均值,权值系数是符合高斯分布,距离该点越近,权值越大。但是没有考虑像素值与当前点的差距。 (这个参数可以理解为值域核的 和 ) double sigmaSpace: 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响,从而使更大的区域中足够相似的颜色获取相同的颜色。 (这个参数可以理解为空间域核的 和 ) int borderType=BORDER_DEFAULT: 用于推断图像外部像素的某种边界模式,有默认值BORDER_DEFAULT. ", g_dstImage); } 导向滤波 需要有高斯滤波和双边滤波的相关知识背景才能更好的理解导向滤波。 其实,输入图像不一定是待滤波的图像本身,也可以是其他图像即引导图像,这也是为何称为引导滤波的原因。

    8810

    秒杀系统设计

    概述 读了极客时间许令波的如何设计秒杀系统后,总结出秒杀系统设计的一些需要注意的点,如何从更多的角度去考量一个架构的设计,保证性能和高可用。 这些经验或者说原则不仅仅适用于秒杀系统,在设计其他系统的时候也有一定的参考性。 秒杀系统架构 秒杀系统单独打造一个系统,与普通的商品购买独立出来,可以单独的作优化 秒杀系统部署在独立机器集群,秒杀的大流量不会影响到正常的商品购买集群的负载 热点数据(如库存数据)单独放到缓存系统中 ,提升读性能 增加秒杀答题,防止有秒杀器抢单 页面进行动静分离,让用户秒杀使不在刷新整个界面(又重新加载所有资源),将页面刷新的数据降到最少 服务端对秒杀商品进行本地缓存,不需要再调用依赖系统的后台服务获取数据 减库存设计,防止超卖 在秒杀系统中,超卖是一个原则性问题,假如只秒杀10个商品,确有100个人抢到了,这是一个大损失。 减库存的方式 用户购物过程一般分为两步:下单和付款。

    10120

    Redis 秒杀实战

    秒杀 秒杀业务流程图 ? ? 0 --真实秒杀秒杀开始前,skuId_start为0,代表活动未开始 当skuId_start改为1时,活动开始,开始秒杀叭 当接受下单数达到sku_count*1.2后,继续拦截所有请求,商品剩余数量为 skuId_booked_1 0 --真实秒杀秒杀验证 jmeter 配置 ? 压测秒杀验证原子性 ? ? ? 项目下载 ? 最近比较忙,没时间完善微信抢红包秒杀的原子性。

    29520

    秒杀架构实践

    前言 之前在 Java-Interview 中提到过秒杀架构的设计,这次基于其中的理论简单实现了一下。 本次采用循序渐进的方式逐步提高性能达到并发秒杀的效果,文章较长请准备好瓜子板凳(liushuizhang?)。 无限制 其实抛开秒杀这个场景来说正常的一个下单流程可以简单分为以下几步: 校验库存 扣库存 创建订单 支付 基于上文的架构所以我们有了以下实现: 先看看实际项目的结构: ? 提高吞吐量 为了进一步提高秒杀时的吞吐量以及响应效率,这里的 web 和 Service 都进行了横向扩展。 web 利用 Nginx 进行负载。 Service 也是多台应用。 ? ?

    29920

    相关产品

    • 图像分析

      图像分析

      腾讯云图像分析基于深度学习等人工智能技术,提供综合性图像理解、图像处理、图像质量评估等服务,包含图像标签、logo识别、动漫人物识别、植物识别等,可以用于智能相册、视频理解、AI营销等场景…..

    相关资讯

    热门标签

    扫码关注云+社区

    领取腾讯云代金券