首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CVPR 2023 | 谷歌、MIT提出统一框架MAGE:表征学习超MAE,无监督图像生成超越 Latent Diffusion

    机器之心专栏 机器之心编辑部 在一篇 CVPR 2023 论文中,来自 MIT 和谷歌的研究人员提出了一种全新的框架MAGE,同时在图像识别和生成两大任务上实现了 SOTA。 识别和生成是人工智能领域中的两大核心任务,如果能将二者合并到一个统一的系统中,这两个任务应该能实现互补。事实上,在自然语言处理中,像 BERT [1] 这样的模型不仅能够生成高质量的文本,还能够提取文本中的特征。 然而,在计算机视觉领域,目前的图像生成模型和识别模型大多是分开进行训练,没有充分利用这两个任务的协同作用。这主要是由于图

    02

    图像识别的原理、过程、应用前景,精华篇!

    图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1、图像识别技术的引入 图像识别是人

    010
    领券