首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像识别的公司

是专注于开发和提供图像识别技术和解决方案的企业。图像识别是一种人工智能技术,通过对图像进行分析和处理,使计算机能够识别和理解图像中的内容和特征。

图像识别的公司可以应用于多个领域,包括安防监控、智能交通、医疗影像、零售业、农业、自动驾驶等。以下是一些图像识别的公司和他们的产品介绍:

  1. 腾讯云图像识别:腾讯云提供了一系列图像识别服务,包括人脸识别、图像标签、OCR文字识别等。这些服务可以帮助开发者快速构建图像识别应用,实现人脸验证、图像搜索、文字识别等功能。详细信息请参考腾讯云图像识别产品介绍:https://cloud.tencent.com/product/imagerecognition
  2. 百度AI图像识别:百度AI提供了丰富的图像识别技术和产品,包括人脸识别、图像分类、图像搜索等。开发者可以利用百度AI的图像识别能力,构建智能相册、智能广告等应用。详细信息请参考百度AI图像识别产品介绍:https://ai.baidu.com/tech/imagecognition
  3. SenseTime商汤科技:SenseTime是一家专注于人工智能和计算机视觉技术的公司,提供了一系列图像识别和人脸识别解决方案。他们的技术广泛应用于安防监控、智能交通、人脸支付等领域。详细信息请参考SenseTime官网:https://www.sensetime.com/
  4. Face++旷视科技:Face++是一家领先的人脸识别技术提供商,提供了一系列人脸识别和图像识别解决方案。他们的技术可以应用于人脸验证、人脸搜索、人脸融合等场景。详细信息请参考Face++官网:https://www.faceplusplus.com/

这些图像识别的公司通过不同的技术和产品,为各行各业提供了丰富的图像识别解决方案,帮助企业实现智能化和自动化。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【快报】谷歌收购图像识别公司 | 机器学习修复神经系统

新智元 AI DAILY 1 谷歌收购法国图像识别公司Moodstocks 谷歌昨天宣布收购巴黎初创公司Moodstocks,该公司为智能手机开发基于机器学习的图像识别技术。...收购的具体条款并没有披露。Moodstocks团队将搬到谷歌在巴黎的研发中心。谷歌巴黎研发中心负责人称,谷歌将利用Moodstocks的成果来改进谷歌现有的图像搜索功能。...Moodstocks在其官网声明中说,从成立以来,Moodstocks的目标就是给机器以眼睛,将摄像机变成智能传感器,使其能感知周围环境;未来将为谷歌制造更好的图像识别工具。...评审团主席Emad Tahtouh表示,鉴于AlphaGo的先进程度,要衡量它的创新水平是一个很大的挑战。...从任何一个角度,无论是它的复杂性、简单性、创新性还是它的潜力,来说,AlphaGo都是不可思议的,它符合创新类所有的要求,它的潜力也是无穷的。

81870

Recorder︱一些图像识别初创公司产品及API搜集ing...

一些公司的产品路线可以很好地给我们启示,欢迎看客补充。...二、国内图像处理 1、face++旷视(人脸识别) 人脸识别、证件识别、图像识别 2、格灵深瞳(图像识别) 格灵深瞳是一家专注于计算机视觉以及人工智能的科技公司,投资人给这个团队的未来市场估值达几千亿。...3、图普科技(图像识别) 国内最大的图像识别云服务平台,每日处理数亿的图片及视频内容。创始人李明强是微信创始团队成员之一,曾带领团队打造出QQ邮箱。业界最专业的智能图片鉴黄师。...相比与创业公司,腾讯优图有着得天独厚的大数据、研发投入、平台等多种优势。 6、SenseTime 商汤科技(图像识别) 在人脸识别测试LFW中准确率超过Facebook和Google。...这并非让机器替代医生,而是为其提供让诊断更加便利的工具。公司还将与诊所、医院以及其他医疗单位合作,分析算法,进一步精炼公司的技术。

3.6K100
  • 图像识别

    我们的大脑使视觉看起来很容易。人类不会分解一只狮子和一只美洲虎,看一个标志,或认出一个人的脸。但这些实际上是用计算机解决的难题:他们看起来很容易,因为我们的大脑非常好地理解图像。...通过验证其对ImageNet的工作,研究人员已经证明了计算机视觉的稳步进展,这是计算机视觉 的学术基准。...Google内部和外部的研究人员发表了描述所有这些模型的论文,但结果仍难以重现。我们现在正在采取下一步,发布在最新型号Inception-v3上运行图像识别的代码。...该模型希望获得299x299的RGB图像,所以这些是input_width和input_height标志。我们还需要将从0到255之间的整数的像素值缩放到图形运算的浮点值。...学习资源更多 要了解一般的神经网络,Michael Nielsen的 免费在线书籍 是一个很好的资源。

    19.5K80

    算法集锦(14)|图像识别| 图像识别算法的罗夏测试

    随着对基于深度学习的图像识别算法的大量研究与应用,我们倾向于将各种各样的算法组合起来快速进行图片识别和标注。...优化后的算法在内存的使用和模型训练上表现越来越好,但当这些算法应用于模糊的、意义不确定的图像时,它们的表现又会如何呢?...方法很简单:设定我的预测,明确我对每一个预测的理解,这样我就可以用正确的工具来完成接下来的工作。...除了内存使用和可训练参数,每个参数的实现细节都有很大的不同。与其挖掘每个结构的特殊性,不如让看看它们是如何处理这些模糊的、意义不明的数据的。...测试结果 总的来说,我们的目标是对预测和预测背后的机理有一个快速的认识。因此点,我们将预测分值靠前的分为一组,并将它们的得分相加。

    5.1K20

    基于OpenCV的棋盘图像识别

    最终的应用程序会保存整个图像并可视化的表现出来,同时输出棋盘的2D图像以查看结果。 (左)实时摄像机进给的帧和棋盘的(右)二维图像 01....数据 我们对该项目的数据集有很高的要求,因为它最终会影响我们的实验结果。我们在网上能找到的国际象棋数据集是使用不同的国际象棋集、不同的摄影机拍摄得到的,这导致我们创建了自己的数据集。...使用低级和中级计算机视觉技术来查找棋盘的特征,然后将这些特征转换为外边界和64个独立正方形的坐标。该过程以Canny边缘检测和Hough变换生成的相交水平线、垂直线的交点为中心。...3.在冻结层的顶部添加了新的可训练层。...测试数据的混淆矩阵 05. 应用 该应用程序的目标是使用CNN模型并可视化每个步骤的性能。

    7.4K20

    1.6 VR扫描:Snap收购图像识别公司AI Factory;任天堂正研究采用AR的新方式

    Snap收购图像识别AI初创公司:AI Factory 据《Variety》报道,Snap已以1.66亿美元收购了图像和视频识别初创公司AI Factory。...任天堂总裁:正研究采用AR的新方式 近日,任天堂总裁古河幸太郎在接受日本日经新闻采访时表示:其不希望公众对任天堂产生误解,公司并没有放弃对新技术的支持,而是在进行不断地研究和开发。...任天堂的硬件开发团队会评估到目前可用的新技术,若确定新技术可以搭配游戏使用,将与软件开发团队进行合作。 ? 古河幸太郎还表示:AR是感兴趣的众多技术之一,任天堂正在研究利用AR的有趣方式。...但在签署协议之前,苹果及其他厂商都在评估和研究最佳的解决方案。光线追踪使计算机可以渲染具有超逼真的照明、反射和阴影的图形,以模仿人眼所见的光线。 ?...该平衡模块的重量相当于三个10000 mAh移动电源,可通过重量平衡,构建更为舒适的体验。

    52310

    Airtest图像识别

    Airtest是一款网易出品的基于图像识别面向手游UI测试的工具,也支持原生Android App基于元素识别的UI自动化测试。...图示为AirtestIDE中脚本运行范例 本文重点是针对Airtest中的图像识别进行代码走读,加深对图像识别原理的理解(公众号贴出的代码显示不全仅供参考,详细代码可以在github查看)。...这里可以看到,Airtest也没有自研一套很牛的图像识别算法,直接用的OpenCV的模板匹配方法。 四、接着看另外一个方法 aircv.find_sift 定义在sift.py里面: ? ?...OpenCV的图像识别算法。...六、总结 1、图像识别,对不能用ui控件定位的地方的,使用图像识别来定位,对一些自定义控件、H5、小程序、游戏,都可以支持; 2、支持多个终端,使用图像识别的话可以一套代码兼容android和ios哦,

    12.4K21

    基于转移学习的图像识别

    当然小伙伴们可以训练自己的卷积神经网络来对这张图片进行分类,但是通常情况下我们既没有GPU的计算能力,也没有时间去训练自己的神经网络。...这两层的目的是简化寻找特征的过程,并减少过度拟合的数量。典型的CNN架构如下所示: ? 03.训练自己的CNN模型 如果我们要使用预训练的模型,那么知道什么是卷积层和池化层有什么意义呢?...总结一下,我们需要做的包括: 1.选择一个有很多狗狗的数据库 2.找到预先训练过的模型对狗进行分类(例如VGG16和Resnet50) 3.添加我们自己的自定义图层以对狗的品种进行分类 用于转移学习的自定义层...方法1:具有损失的完全连接的层 通过完全连接层,所有先前的节点(或感知)都连接到该层中的所有节点。这种类型的体系结构用于典型的神经网络体系结构(而不是CNN)。...最重要的是,我们花费了很少的时间来构建CNN架构,并且使用的GPU功能也很少。 使用预先训练的模型大大的节省我们的时间。在此过程中,改进了识别狗狗的分类模型。但是,该模型仍然有过拟合的趋势。

    1.6K20

    基于TensorFlow和Keras的图像识别

    简介 TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。 定义 如果您不了解图像识别的基本概念,将很难完全理解本文的内容。...其设计原则旨在用户友好和模块化,尽可能地简化TensorFlow的强大功能,在Python下使用无需过多的修改和配置 图像识别(分类) 图像识别是指将图像作为输入传入神经网络并输出该图像的某类标签。...图像分类的子集是对象检测,对象的特定实例被识别为某个类如动物,车辆或者人类等。 特征提取 为了实现图像识别/分类,神经网络必须进行特征提取。特征作为数据元素将通过网络进行反馈。...在图像识别的特定场景下,特征是某个对象的一组像素,如边缘和角点,网络将通过分析它们来进行模式识别。 特征识别(或特征提取)是从输入图像中拉取相关特征以便分析的过程。...许多图像包含相应的注解和元数据,有助于神经网络获取相关特征。 神经网络如何学习识别图像 直观地了解神经网络如何识别图像将有助于实现神经网络模型,因此在接下来的几节中将简要介绍图像识别过程。

    2.8K20

    图像识别——MNIST

    “深度学习是一个基于赋予大型神经网络多层隐含的机器学习领域,以学习具有较强预测能力的特征。...尽管深度学习技术是早期神经网络的后代,但它们利用无监督和半监督学习,结合复杂的优化技术,实现了最新的精确度。”...自动编码器通过使用与训练实例和目标标签相同的未标记输入来训练。去噪自动编码器是通过随机破坏自编码器的输入矩阵来训练的。...本文使用NEURAL程序来介绍一下在SAS里如何实现图像识别。例子所用的数据集是MNIST数据集,从http://yann.lecun.com/exdb/mnist/可以获取。...训练集 (training set) 由来自 250 个不同人手写的0-9的数字构成,正确地识别这些手写数字是机器学习研究中的一个经典问题。

    5.2K40

    图像识别在测试中的应用

    但是在实际应用中,无论是web端还是移动端,仍有很多时候需要根据页面内容、页面中的图像进行定位及判定,是这些手段所达不到的,这里我们来介绍一下关于图像识别在测试中的应用。...在具体讲解之前,先介绍一下图像识别在测试中能够想到的引用场景: 测试过程中,通过对待测软件进行屏幕截图,采用图像识别算法识别截图中是否包含预定义的可操作控件,如果存在,则触发控制指令,也就达到了图像识别引导测试过程的目的...- 测试结果的验证,通过对待测软件的界面进行截图操作,利用图像识别技术将截图与期望的结果进行匹配,从而自动获取测试结果。- 通过图像识别对比来进行性能测试,比如app测试中常见的响应时间的测试。...,有了webdriver等ui自动化后为什么还要用图像识别呢?...2、一些游戏或者一些特殊应用的ui控件比较难以识别,然而通过图像识别却可以轻易找到对应的元素。 3、代码的学习成本比较低,常用的函数已经封装完毕,并且简单易懂。

    86720

    图像识别解释方法的视觉演变

    正文字数:4270 阅读时长:7分钟 图像识别(即 对图像中所显示的对象进行分类)是计算机视觉中的一项核心任务,因为它可以支持各种下游的应用程序(自动为照片加标签,为视障人士提供帮助等),并已成为机器学习...,他是该公司的一名机器学习工程师。...在过去的十年中,深度学习(DL)算法已成为最具竞争力的图像识别算法。但是,它们默认是“黑匣子”算法,也就是说很难解释为什么它们会做出特定的预测。 为什么这会成为一个问题呢?...在以上因素的推动下,在过去的十年中,研究人员开发了许多不同的方法来打开深度学习的“黑匣子”,旨在使基础模型更具可解释性。有些方法对于某些种类的算法是特定的,而有些则是通用的。有些是快的,有些是慢的。...在本文中,我们概述了一些为图像识别而发明的解释方法,讨论了它们之间的权衡,并提供了一些示例和代码,您可以自己使用Gradio来尝试这些方法。

    1.1K30

    图像识别——突破与应用

    人们现在使用智能手机相机与企业(零售商,金融机构,供应商,医疗服务提供商,保险公司等)进行通信(例如电子邮件,聊天,博客)的便利性也使得图像和视频在不同行业的公司进行沟通,并激励他们投资这个领域。...这是图像识别史上的一个转折点,也是这个领域前途光明的开始。这个成就将焦点从传统的图像识别方法转移到了使用深度神经网络的新方法。...另外一个例子,人脸识别在进店时识别忠实有价值的顾客,提醒店员进行特别的服务。 4.4 人机交互 研究人员和软件公司一直对提高人机交互性非常感兴趣。...图像识别与虚拟和增强现实的进步相结合,将继续为游戏产业带来革命性的变化。 4.5 对物体和场景建模 图像识别最重要的应用之一将是健康行业的医疗和生物医学图像分析。...配备有先进图像识别能力的智能移动机器人具有许多商业(例如服务业)和个人用途。最先进的图像识别最新的应用是协助自动驾驶汽车和汽车驾驶员。

    14.4K113

    基于TencentOS Tiny的图像识别案例

    RISC-V芯片的应用实例等。...例如:通过CH32V307芯片驱动OV2640摄像头采集指示灯的运行状态,后续通过图像识别算法提取颜色特征,并将结果上报到云平台。...近来,在官方例程的基础上进行了优化改进,解决了图像识别算法泛化能力差等弊端,具体内容如下所示:硬件 硬件结构极为简单,主要包含主控CH32V307、ESP8266 wifi模块、ST7789...图片优化改进 嵌入式设备的应用场景一般较为复杂,很难通过颜色识别算法提取图像的全部特征,例如:智能门禁系统中涉及的人脸识别,自动抄表系统涉及的文字信息提取等。...因此,近来想要把人工智能算法嵌入到边缘计算端,最终实现云-边-端的高效协同,优化嵌入式设备的执行速度以及图像识别准确率。

    3K154

    智能视频图像识别

    智能视频图像识别系统选用人工智能识别算法技术,能够随时监控和剖析现场各大品牌相机中的视频图像。...智能视频图像识别系统软件关键运用相机拍摄的图像开展智能实时分析,抓拍监控识别和检作业现场的违规操作及行为,并向责任人推送信息。...与传统监控系统软件对比,智能视频图像识别系统软件增强了自主监控报警的能力,增强了数据检测和解析功能。智能视频图像识别系统具备很大的经济价值和广泛的应用领域,引起了国内外研究工作人员的广泛关注。...融合国内外研究现况,分析了智能视频视频监控系统仍存在的一些问题。在智能视频视频监控系统中,人员运动目标检测是很多智能控制模块的基本功能,检验的精确性决定了智能视频视频监控系统的精确性。...智能视频图像识别可应用于全部必须生产安全/工程施工的场地,包含在建工地、在建地铁/铁路线/道路、新建加工厂和经营加工厂、煤矿业和工作船,给施工作业产生很大的方便。

    5.7K40
    领券