学习
实践
活动
工具
TVP
写文章

不要怂,就是GAN

我们平时在训练深度学习模型的时候,往往需要给训练出的网络模型做一个评价,并由此判断模型效果,那如果我们模型的输出结果是一张图片,应该如何让机器给结果打分呢? X中就是我们希望训练出的模型能够生成的目标类型图片集,比如都是各种人脸图片,那么训练过程中D就会不断判断G生成的图片和真实人脸图片谁才是真的,刚开始G生成的图片比较不知所云,所以可以判断,慢慢地G会随着 D的反馈越来越优秀,生成的图片越来越像人脸,从而能以假乱真,影响D的判断,而D也在不断地成长,越来越火眼金睛,从而能识别出G的图片是假的,由于做对比的是各种人脸图片呢,所以G为了骗过D,也会生成类似的人脸 前面说了我们的输入可以改成图片,这里我们的目的是把一匹马转换成一批斑马,现在输入一张马的图片到生成器,结果给到鉴别器,鉴别器从真实的斑马数据集中取照片,和生成的斑马做比较判断,这是第一个GAN结构。 另一个GAN结构,输入一个斑马图片到另一个生成器(这个生成器的训练目的是把斑马转化成马),生成的结果马图片输入到另一个鉴别器,该鉴别器从真实的马数据集中取照片,和生成的马做比较判断。

20140

学界 | 要让GAN生成想要的样本,可控生成对抗网络可能会成为你的好帮手

AI 科技评论按:如何让GAN生成带有指定特征的图像?这是一个极有潜力、极有应用前景的问题,然而目前都没有理想的方法。 通过实验,证实了CGAN可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN由三种神经网络结构组成,发生器/解码器,鉴别器和分类器/编码器。图1中描述了这种CGAN的架构。 结果和讨论 使用CelebA数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN可以生成多标签样本。CelebA数据库由多个标签的图片构成。 从图中可以看出CGAN生成的人脸图片比条件GAN更契合输入标签。例如,使用“Arched Eyebrow”标签时,CGAN生成的图片全部符合这个标签的特征,而条件GAN则有偏差。 ? 通过实验,作者证实了CGAN可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。

761100
  • 广告
    关闭

    人脸识别限时特惠,10万次资源包仅需9.9元!!

    基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、比对、搜索、验证、五官定位、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    要让 GAN 生成想要的样本,可控生成对抗网络可能会成为你的好帮手

    如何让 GAN 生成带有指定特征的图像?这是一个极有潜力、极有应用前景的问题,然而目前都没有理想的方法。 通过实验,证实了 CGAN 可以有效地根据输入标签生成人脸图像样本。 材料和方法 CGAN 由三种神经网络结构组成,发生器 / 解码器,鉴别器和分类器 / 编码器。 结果和讨论 使用 CelebA 数据库生成多标签的名人人脸图片样本 通过想发生器输入多个标签,CGAN 可以生成多标签样本。CelebA 数据库由多个标签的图片构成。 从图中可以看出 CGAN 生成的人脸图片比条件 GAN 更契合输入标签。例如,使用 “Arched Eyebrow” 标签时,CGAN 生成的图片全部符合这个标签的特征,而条件 GAN 则有偏差。 通过实验,作者证实了 CGAN 可以生成具有多个标签的人脸图片。同时,这种控制有效性也可以对生成对抗网络的研究带来一些重要的提升。

    1.7K20

    AI换脸鉴别率超99.6%,微软用技术应对虚假信息

    以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。 与此同时,换脸鉴别模型还需要对目前不存在、但未来可能出现的换脸技术也具有判别力,如何去预测未来换脸技术的发展方向,提前布防,也是重要课题。 FaceSwap 是一个学习重建脸部特征的深度学习算法,可以对给出的图片进行模型替换,人类对于此类换脸的识别率也是75%左右*。 Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。 图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成 因此,微软亚洲研究院研发的换脸鉴别算法,基于 FaceForensics 数据库的测试结果均超越了人类肉眼的识别率以及此前业界的最好水平

    29420

    AI换脸鉴别率超99.6%,微软用技术应对虚假信息

    以技术防御技术,让假脸无所遁形 为了解决这个问题,学界与业界开始研究如何利用 AI 技术去反向鉴别图像、视频的真伪。 与此同时,换脸鉴别模型还需要对目前不存在、但未来可能出现的换脸技术也具有判别力,如何去预测未来换脸技术的发展方向,提前布防,也是重要课题。 FaceSwap 是一个学习重建脸部特征的深度学习算法,可以对给出的图片进行模型替换,人类对于此类换脸的识别率也是75%左右*。 Face2Face 则是用其他真实的人脸去替换原本的人脸,不涉及人脸的生成,对于它制造的脸,人类的识别率只有41%*。 图1:微软亚洲研究院开发的模型分别提取蒙娜丽莎和赫本图片中的身份信息和属性信息进行合成 因此,微软亚洲研究院研发的换脸鉴别算法,基于 FaceForensics 数据库的测试结果均超越了人类肉眼的识别率以及此前业界的最好水平

    40120

    Deep-Fake原理揭示:使用WGAN-GP算法构造精致人脸

    如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数 例如要让网络生成人脸,我们也不可能拿所有人脸图像来训练网络,因此就要做折中或妥协,我们拿一张真的人脸图像,然后用构造者网络生成一张假的人脸图像,在这两个人脸图像之间取一点,然后让网络对该点求导后结果的绝对值不大于 , image_batch): ''' 训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。 然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力 ''' with tf.GradientTape(persistent=True 可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。

    32820

    人脸表情识别】如何做好表情识别任务的图片预处理工作

    上一篇专栏文章中,我们介绍了人脸表情识别的相关概念以及研究现状并了解了目前基于图片人脸表情识别领域最常用的几个数据集。 本文将介绍基于图片人脸表情识别中最常用的预处理方式和对应的方法。 图3|论文[9]中的光照归一化(从左到右依次为原始图片、直方图均衡后的图、线性映射后的图、直方图均衡和线性映射加权求和后的图) 姿态归一化:姿态归一化主要内容就是将一些侧脸的人脸图像转化为正面的人脸图, 遮挡的部位可能是人脸上任意部位,遮挡物也可以是任意东西(头发、眼睛甚至拍摄图片时的外部物体),因此更多的文章[13,14]是把带遮挡的表情识别单独作为研究命题,通过构建特殊网络对含有遮挡的人脸表情进行识别 总结 本文介绍了基于图片人脸表情识别中最常用的三种预处理方式及相对应的具体方法。后两篇文章将分享近几年论文中具体的方法实现。

    82320

    国内人脸识别第一案,我们来谈谈国外法规和隐私保护技术

    比如,哪些领域可运用人脸识别、哪些不能运用,该如何保障公众的知情权、选择权、同意权与信息安全,若有信息泄露如何惩处与应对。 对此,我们可以参考国际上的相关法律条例。 ? 如何能控制技术,除了让相关政策法规予以规范,掌握核心技术的科技巨头也责无旁贷。 ? 从技术层面如何对抗人脸被滥用? 并且,Facebook首席技术官Mike Schroepfer发布博客宣布,公司正和微软联合来自麻省理工、牛津等大学的研究者,通过置办“Deepfakes鉴别挑战赛”,探索如何通过数据集和基准测试检测Deepfake 用区块链技术鉴别图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。 通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别图片,区块链技术还能鉴别假视频。

    63330

    国内人脸识别第一案来了,我们来谈谈国外法规和隐私保护技术

    比如,哪些领域可运用人脸识别、哪些不能运用,该如何保障公众的知情权、选择权、同意权与信息安全,若有信息泄露如何惩处与应对。 对此,我们可以参考国际上的相关法律条例。 ? 2. 如何能控制技术,除了让相关政策法规予以规范,掌握核心技术的科技巨头也责无旁贷。 ? 04 从技术层面如何对抗人脸被滥用? 1. 并且,Facebook首席技术官Mike Schroepfer发布博客宣布,公司正和微软联合来自麻省理工、牛津等大学的研究者,通过置办“Deepfakes鉴别挑战赛”,探索如何通过数据集和基准测试检测Deepfake 用区块链技术鉴别图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。 通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别图片,区块链技术还能鉴别假视频。

    60820

    国内人脸识别第一案,我们来谈谈国外法规和隐私保护技术

    比如,哪些领域可运用人脸识别、哪些不能运用,该如何保障公众的知情权、选择权、同意权与信息安全,若有信息泄露如何惩处与应对。 对此,我们可以参考国际上的相关法律条例。 ? 2. 如何能控制技术,除了让相关政策法规予以规范,掌握核心技术的科技巨头也责无旁贷。 ? 四、从技术层面如何对抗人脸被滥用? 1. 并且,Facebook首席技术官Mike Schroepfer发布博客宣布,公司正和微软联合来自麻省理工、牛津等大学的研究者,通过置办“Deepfakes鉴别挑战赛”,探索如何通过数据集和基准测试检测Deepfake 用区块链技术鉴别图片和假视频 能够用技术来解决技术问题的,不只有AI,区块链技术同样也能解决假图片问题。 通过这些信息,媒体和用户可以判断出该图片是否经过PS等人为修饰,进而判断相关资讯真伪。 除了鉴别图片,区块链技术还能鉴别假视频。

    82020

    解读 | 生成人脸修复模型:同时使用两个鉴别器,直接合成逼真人脸

    简介 这篇论文提出了一个用来进行人脸修复的深度生成模型,如下图所示,针对一副面部图片中的缺失区域,这个模型可以直接修复人脸。 ? 与之前很多其他工作不同,针对人脸修复任务,这篇论文的作者同时使用了两个鉴别器来构建整个模型,因此不论是局部图像还是整个图像,看上去都更加逼真。 2. 方法 2.1 模型结构 ? 语义解析网络用于改进上述生成对抗网络生成的图片,语义解析网络是基于论文《使用全连接卷积编码-解码网络进行物体轮廓检测》,因为这种网络能够提取到图像的高水平特征。 两个鉴别器的损失函数的不同之处在于:局部鉴别器的损失函数 (L_a1) 仅仅反向传播图像缺失区域的损失梯度,而整体鉴别器的损失函数 (L_a2) 反向传播整个图像的损失梯度。 结论 这个基于生成对抗网络的模型具有两个鉴别器和一个语义正则化网络,能够处理人脸修复任务。它能够在随机噪声中成功地合成缺失的人脸部分。 6.

    97080

    【GANs】将普通图片转换为梵高大作

    超级逼真的人脸、动物和其他算法生成的图像令人惊叹不已,要知道,这项技术出现也不过短短几年。 生成式对抗网络技术人脸处理实例 这一领域相关度最高的研究是英伟达的 StyleGAN和谷歌的BigGAN。 要生成高质量的图片需要极高的计算能力,所以目前仍不是个可以轻松解决的问题。 因此,本文将介绍如何在不使用昂贵硬件的前提下利用GANs处理高清图片,这对手上没有高级显卡(GPU)的人来说是一个绝好机会。 现在,假设用这种方法训练生成对抗网络,直到生成器把所有尺寸调整好的图片都转换成了想要的“梵高风”,这时候问题就来了:如何才能将整张高清图片从A域转换到B域呢? 测试实例(从左到右):A域的图片,编辑后的图片(AB), B域的图片 “全家桶” 为了保证目前为止所有步骤都清楚明了,再复习一下整个网络如何运行的。 我们的目的是将A类图片编辑成B风格。

    1.3K30

    真实到可怕!英伟达MIT造出马良的神笔

    通过一个简单的素描草图,就能生成细节丰富、动作流畅的高清人脸: ? 根据勾勒出的人脸轮廓,系统自动生成了一张张正在说话的脸,脸型、面部五官、发型、首饰都可以生成。 ? 甚至还主动承担了给人脸绘制背景的任务。 除此之外,人脸的面色、发色也可以定制化选择,皮肤或深或浅,发色或黑或白,全都自然生成无压力: ? ? △ 面色红润style ? △ 一脸苍白style ? (当然,仔细看眉毛,还是有一些破绽) 不只人脸,整个身子都能搞定: ? 鉴别器共有两种,一种处理图片,一种处理视频。 图片鉴别器同时获取输入图像和输出图像,并从多个特征尺度进行评估,这与pix2pixHD类似。视频鉴别器接收Flow maps以及相邻帧以确保时间一致性。 而且研究团队给出了详细的训练指南,可以算是手把手教你如何自己训练出一个类似的强大神经网络。 包括用8个GPU怎么训练,用1个GPU又该怎么设置等等。 ?

    38830

    循环生成网络 CycleGan 原理介绍

    了解CycleGans不同级别的工作原理和能力令人兴奋,下面还介绍了有关人工智能如何以前所未有的方式影响我们日常的见解。 例如:给定一组人脸图像,该算法可以自学(通过机器学习数据进行训练)人脸的外观,并能够创建新人脸。 CycleGAN是传统GAN的特殊变体。 每个GAN内部都有一个生成器网络,该网络学习如何根据需要转换数据。GAN的第一生成器学习计算F,GAN的第二生成器学习计算G。 ? 生成器函数G和F的定义。 此外,每个生成器都与一个鉴别器相关联,该鉴别器学习将实际数据y与合成数据G(x)区分开。 ? 生成器函数G和F的定义。 因此,CycleGAN由两个生成器和两个鉴别器组成,它们学习变换函数F和G。 鉴别器损失也用于训练鉴别器,以擅长区分真实数据和合成数据。 当这两个设置在一起时,它们将彼此改善。训练生成器来欺骗鉴别器,并且鉴别器将被训练为从合成数据中更好地区分真实数据。

    1.6K20

    “一网打尽”Deepfake等换脸图像,微软提出升级版鉴别技术Face X-Ray​

    虽然研究者们为检测换脸图片提出了多种AI鉴别算法,但随着换脸算法的不断改造升级,鉴别算法很难跟上换脸算法的变化。 微软亚洲研究院团队近期提出的Face X-Ray算法或将改变这种局面。 它能鉴别图片真假,不但能告诉你图片有没有进行过换脸操作,而且还能告诉你换脸操作的边界在什么地方。”这篇论文已入选CVPR 2020。 因此,Face X-Ray 通过确定图像是否包含两种不同的噪声,就能判定一张人脸图像为合成图像的几率。 同时,使用分类器方法的前提是一定要收集大量假图片才能进行训练,但“假图片”本身可能已经对社会造成了危害。 Face X-Ray则把换脸鉴别技术推到了更高层次。 首先具有通用性,Face X-Ray背后的算法是“类自监督学习”的一种方法,“我们不需要这些(换脸图片)数据,也不用知道是哪个换脸算法,就能鉴别。”郭百宁称。

    30220

    CVPR2019:PizzaGAN通过深度学习制作披萨

    你有没有想过通过深度神经网络做学会如何烹饪?麻省理工学院的最新研究便使用深度神经实现如何烹饪美味的披萨! 3.GAN如何制作比萨饼 数据集 用于训练PizzaGAN的比萨饼数据集由9,213张图片组成,每张图片都有一个披萨。 鉴别器模型用Generator network模型的一些输出进行训练,并且从其预测中丢失鉴别器模型用于Generator network模型的训练。 往期文章一览 1、人脸识别中的活体检测算法综述 2、手撕OpenCV源码之高斯模糊 3、漫话:如何给女朋友解释为什么计算机只认识0和1? 4、10个不得不知的Python图像处理工具,非常全了! 5、OpenCV4.0实现人脸识别 6、基于内容的图像检索技术综述-传统经典方法 7、为什么不建议你入门计算机视觉 8、机器视觉检测系统中这些参数你都知道么?

    61230

    GeekPwn对抗样本挑战赛冠军队伍开源人脸识别攻击解决方案

    比赛上半场中,赛会要求所有选手进行非定向图片(将飞行器识别为任何其他物体)、定向图片(将武器识别为特定的其他物品)以及亚马逊名人鉴别系统(将大赛主持人蒋昌建的照片识别为施瓦辛格)共计三种图像的对抗样本攻击 他们需要对照片做一些小的修改,以欺骗人脸识别系统,让它把照片中的人识别为施瓦辛格。比赛结束后,大家才知道该人脸识别系统是亚马逊名人鉴别系统。 由吴育昕与谢慈航组成的「IYSWIM」战队在限时 30 分钟的比赛中,首先于 21 分钟破解了亚马逊名人鉴别系统 Celebrity Recognition,并随后在定向图片的对抗样本攻击上破解成功,取得了领先 而对于人脸,我们首先收集 target 人物的 N 张人脸图片,运行模型得到 N 个 embedding vector v_i。 在相关的 GitHub repo 中,我们可以看到该团队的攻击代码和结果: 结果 比赛期间,吴育昕团队成功地攻击了 AWS 名人鉴别系统,让它把蒋昌建识别为了施瓦辛格。 ?

    74720

    GAN能合成2k高清图了!还能手动改细节 | 论文+代码,英伟达出品

    △ 输出的不同合成场景 pix2pixHD不仅可以将街景语义图转化为真实图像,还能合成人脸。 无论是在街景中增加和减少物体,还是改变人脸的五官,都是通过一个可编辑的界面完成的。 网络架构 要生成高分辨率图片,直接用pix2pix的架构是肯定不行的。作者们在论文中说,他们试过了,训练不稳定,生成图片的质量也不如人意。 还是得在它的基础上,进行改造。 ? 多尺度鉴别器 高分辨率图片不仅生成起来难,让计算机鉴别真假也难。 要鉴别高分辨率图像是真实的还是合成的,就需要一个感受野很大的鉴别器,也就是说,要么用很深的网络,要么用很大的卷积核。 于是这篇论文的作者们提出了一种新思路:多尺度鉴别器,也就是用3个鉴别器,来鉴别不同分辨率图片的真假。 ? 如上图所示,这三个鉴别器D1、D2和D3有着相同的网络结构,但是在不同尺寸的图像上进行训练。

    80680

    论文Express | 谷歌DeepMind最新动作:使用强化对抗学习,理解绘画笔触

    人类需要告诉模型,哪些输入图片是猪,模型才能从中总结规律。 鉴别器能判断某图形是由Agent生成的,还是从真实照片的数据集中采样而来。 如果代理生成的图像成功地骗过了鉴别器,就会获得奖励。也就是说,奖励函数本身也是由代理学习得来,人类并没有设置奖励函数。 在MNIST手写数字图像生成的实验中,输入数据包括手写数字的图像,但没有明确指出它们是如何绘制的。强化学习代理需要通过自学数字书写的笔画(图案、笔触强弱、笔顺),控制画笔,重现特定的图像。 接下来,鉴别器将作出预测,该图像是目标图像的副本,还是由代理生成的。图像越难鉴别,代理得到的回报越多。 重要的是,这一切是可以解释的,因为它产生了一系列控制模拟画笔的动作。 在人脸的真实数据集上,强化对抗式学习也取得了不错的效果。绘制人脸时,代理能够捕捉到脸部的主要特征,例如脸型、肤色和发型,就像街头艺术家用寥寥几笔描绘肖像时一样: ?

    43840

    相关产品

    • 换脸甄别

      换脸甄别

      换脸甄别(ATDF)技术可鉴别视频、图片中的人脸是否为AI换脸算法所生成的假脸,同时可对视频或图片的风险等级进行评估。广泛应用于多种场景下的真假人脸检测、公众人物鉴别等,能有效的帮助支付、内容审核等行业降低风险,提高效率。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券