今天跟大家聊一聊散点图中分割不同象限的辅助线制作技巧!...▽ 分割象限 在做完散点图之后 通常我们都很想知道这些点的分布是否存在某种趋势 如果趋势比较明显 用肉眼很容易观察到 但是如果趋势不太明显 需要借助辅助线才能更好的看出点的分布趋势 今天教大家怎么在散点图中制作出分割象限的辅助线...在坐标轴选项——横坐标交叉一栏选中坐标轴值 ? 自定义为0.03(刚好是纵坐标的中值) 此时横坐标交纵坐标于3.0%的中点位置 ? 然后切换到水平轴 ? 在坐标轴选项——纵坐标交叉中选中坐标轴值 ?...将簇状柱形图的四个区块分别填充不同颜色 ?...再格式化其他图表元素 最终的效果如下图所示 ? 这种做法虽然稍微复杂 但是效果要好于前两种 因为可以将不同区间显示不同颜色 散点的分布趋势也更加的明显
上的回归,并强制直线通过原点I()从算术的角度来解释括号中的元素。...直线回归的变异来源 2、一元线性回归的假设检验 在一元线性回归中(多元也一样),假设检验主要分两块,分为对回归方程的检验和对回归系数的检验,这两个检验虽然构造的统计量不同,但在一元线性回归中,这两个检验结果是一样的...在无效假设下,SSR与SSE之间的比值服从df=1和df=n-2的F分布 构造统计量: 后面就是计算统计量,计算P值,确定是否显著。...residuals(fit)#拟合模型的残差值 绘制带回归线的散点图 fit<-lm(weight~height,data=women) summary(fit) myintercept<-fit...)+ geom_point(size=5,color="red")+ geom_abline(slope=myslope,intercept=myintercept) image.png 绘制带残差显得散点图
本文介绍基于Python语言的matplotlib模块,对Excel表格文件中的指定数据,加以密度散点图绘制的方法。 首先,明确一下本文的需求。 ...其中,对于名称为26的这1列(左侧紫色框内数据),我们希望提取其数值等于1的所有行,并对这些行中的NIR_predict列与NIR_true列(右侧紫色框内数据)的数值加以密度散点图的绘制。 ...使用plt.scatter()绘制散点图,其中x和y是散点的横纵坐标,c是颜色值,s是散点的大小,cmap是颜色映射,并使用plt.colorbar()添加颜色条。 ...紧接着,使用plt.rc()设置字体为Times New Roman;随后,生成一条直线的横坐标范围,使用np.linspace()生成一系列横坐标值,并存储在x_line中;这些点将组成后续所得散点图中的...可以看到,我们已经绘制得到了指定数据之间的密度散点图。
ECharts中dataZoom组件及散点图的绘制 dataZoom 组件是对 数轴(axis) 进行『数据窗口缩放』『数据窗口平移』操作。...dataZoom 组件可同时存在多个,起到共同控制的作用。控制同一个数轴的组件,会自动联动。下面例子中会详细说明。...dataZoom 的运行原理是通过『数据过滤』来达到『数据窗口缩放』的效果。...dataZoom 的数据窗口范围的设置,目前支持两种形式: 百分比形式:参见 dataZoom.start 和 dataZoom.end。...在代码中加入dataZoom组件 <!
vscode 在不同设备上共用自己的配置 介绍 code settings sync:是专门用来同步vacode配置到Gitee中的插件,通过这个插件,可以在任何新的设备,新的平台同步自己的配置,快速的构建自己熟悉的...使用 在插件库寻找下载code settings sync 在Gitee中创建Gist(代码片段管理服务) 因为Gitee的限制,不可以新建一个空的Gist,所以按照要求填好相关内容,即可创建成功创建...,在Gitee中生成私人令牌的时候只需要勾选gists 即可,user_info 权限是必选。...私人令牌写在setting json的gitee.access_token属性中 配置VsCode 中的setting json,在最后追加gitee.gist和gitee.access_token...在自己的Gitee中查看自己上传的配置 7.
原文:Azure Tips and Tricks 翻译:汪宇杰 导语 有时需要使用与 Azure Functions 自动生成的路由前缀不同的路由前缀。...例如:https://mynewapimc.azurewebsites.net/api/HttpTriggerCSharp1 在函数名之前使用 api。...如果我希望路由前缀为空,那么就使用以下内容: { "http": { "routePrefix": "" } } 只需重新启动 Azure Function,现在就可以无需 "api" 前缀即可访问我的...{ "http": { "routePrefix": "myroute" } } Azure Functions 是一项按需提供的云服务,可提供运行应用程序所需的各项不断更新的基础结构和资源...你只需专注于对你最重要的代码,Functions 会处理其余部分。Functions 为 Azure 提供无服务器计算。
* hInstance, HINSTANCE__ * hPrevInstance, wchar_t * lpstrCmdLine, int nCmdShow) 行 200 C++ webkit的代码是在...XMLHttpRequest::didReceiveData里收到数据后,存到Blob里,然后在BlobResourceHandle里创建异步回调,模拟网络请求给FileReaderLoader去加载...发出send blob请求后,content层根据request.setDownloadToFile标志,转到文件里,并且在repose里设置一个文件路径 > content.dll!...结束后,在FileLoader发起网络请求后,storage层开始读取之前的本地路径 > storage.dll!...storage::BlobURLRequestJob::*)(void)>::Run(storage::BlobURLRequestJob * object) 行 176 C++ 读到了本地路径下的blob
192.168.2.240 compute1 192.168.2.242 compute2 192.168.2.243 compute3 192.168.2.248 compute4 192.168.2.249 在不同的计算节点使用不同的存储后端...Scheduler 为了使nova的调度程序支持下面的过滤算法,需要修改使之支持 AggregateInstanceExtraSpecsFilter ,编辑控制节点的 /etc/nova/nova.conf...enabled | | 7 | compute3 | up | enabled | +----+---------------------+-------+---------+ 在本例中...aggregate_instance_extra_specs:ephemeralcomputestorage=true 结果验证 使用flavor m1.ceph-compute-storage 启动4台虚拟机,发现虚拟机磁盘文件全部在ceph...,不在同一个主机集合的主机仍然可以选择,但是无法迁移,需要增加只能在所在主机集合内迁移的功能 ---- 参考文章 OpenStack: use ephemeral and persistent root
3.其他散点图函数 除了上面的包和函数可以绘制散点图外,还有一些包也可以绘制复杂性的散点图。比如说car包中的scatterplot()函数和lattice包的xyplot()函数。...car包中的scatterplot()函数增强了散点图的许多功能,它可以很方便地绘制散点图,并能添加拟合曲线、边界箱线图和置信椭圆,还可以按子集绘图和交互式地识别点。...分别表示水平(x轴)和垂直(y轴)坐标的数字向量; boxplots # 如为x,则在下方绘制水平x轴的边界箱线图;如为y,则在左边绘制垂直y轴的边界箱线图; # 如为xy,则在水平和垂直轴上都绘制边界箱线图...# 分组变量或因子;使用不同的颜色、绘图符号等来绘制分组图形; by.groups # 为TRUE,则按分组拟合回归线; xlab、ylab # x轴和y轴标签; log # 绘制对数坐标轴; jitter...()函数也可以绘制散点图。
python绘制散点图的两种方法 说明 1、调用scatter()函数,调用scatter()从给出的一堆随机点(包括x,y坐标)中绘制散点图。...它可以单独控制每个散点与数据的匹配,使每个散点具有不同的属性。 2、另一种是调用plot()函数。...matplotlib.pyplot as plt #构造数据 x = np.random.randn(200) y = np.random.randn(200) print(x[:10]) print(y[:10]) #绘制散点图...plt.scatter(x, y) plt.show() numpy中有一些用来产生随机数的常用函数,randn()和rand()就属于其中。 ...以上就是python绘制散点图的两种方法,希望对大家有所帮助。更多Python学习指路:python基础教程 本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。
散点图 当想要显示两个要素或一个要素与标签之间的关系时,散点图很有用。这非常有用,因为还可以描述每个数据点的大小,为它们涂上不同的颜色并使用不同的标记。看看seaborn的基本命令是做什么的。...seaborn中的地块也可以text使用来添加到每个条annotate。在仔细查看数据集时,发现缺少许多元数据信息。...定义了总共10个垃圾箱,以便将整个垃圾箱median_house_value分配到10个不同的存储桶中。...联合图 联合图是要绘制的两个要素的散布图与密度图(直方图)的组合。seaborn的联合图甚至可以使用kindas 甚至单独绘制线性回归reg。...带群图的箱形图 箱形图将信息显示在单独的四分位数和中位数中。与swarm图重叠时,数据点会分布在其位置上,因此根本不会重叠。
sql server 每次在备份的时候都会把相关信息记录到msdb库下面的表里面,为了更直观的查看备份的情况,我们可以在grafana上配置相关图表进行展示。...效果如下: 用到的sql如下: 生成日期序列(左上角) SELECT CONVERT(VARCHAR, GETDATE(), 23) AS 'date' UNION ALL SELECT CONVERT...ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) - 1 AS sj FROM sys.objects ) AS timeList; 统计每天备份的库数量...'D' group by CONVERT(DATE, backup_finish_date) order by CONVERT(DATE, backup_finish_date) desc 绘制明细表格...关于各个列的含义,可以参考官方文档。
任务描述: 编写Python程序,绘制散点图动画,每隔800毫秒更新一次动画,随机选择一些散点符号使其时隐时现。
今天这篇推文小编写一些基础的内容:如何绘制在散点图上显示其线性模型线性模型的拟合结果及其置信区间。...()函数绘制 小编这里将结合R-ggpubr包进行必要图表元素的的添加,首先,我们使用ggplot2进行基本的绘制,如下: 「样例一」:单一类别 library(tidyverse) library(ggtext...接下来,小编再介绍多个元素的绘制方法。...以上就是简单的介绍如何使用R和Python绘制带有拟合区间的散点图,更多详细资料可参考:ggplot2::geom_smooth()[1]seaborn.lmplot()[2] 总结 本期推文小编简单介绍了如何绘制在散点图上显示其线性模型线性模型的拟合结果及其置信区间...,同时也比较了R-ggplot2和Python-seaborn绘制图表的不同,希望小伙伴们可选择适合自己的工具进行可视化图表的绘制。
概述 上一篇文章中我们介绍了如何使用ArcGIS JS API和eCharts结合,在二维和三维场景下绘制迁徙图。...这篇文章我们来介绍下如何在二维和三维场景下绘制散点图,其实散点图跟迁徙图一样,它的绘制也跟地理坐标系有关,所以实现思路跟迁徙图的绘制是一样的,我们来看下最终效果: 实现思路 迁徙图、散点图这种图表跟地理坐标关系紧密...2、通过上述操作实例化完一张二维地图后,我们接下来就要进行散点图的绘制操作了,在开始之前我们需要一些数据,首先是散点图中所要用到的各个城市坐标,我在此处将它们单独抽出来作为一个js文件,源文件如下:...,' + err); }); } 5、通过以上操作过程就实现了散点图的绘制,如果需要绘制三维场景下的散点图,只需要将mapview更改为sceneview即可。...总结 本文在上一篇文章的基础之上跟大家介绍了一下使用ArcGIS JS API和eCharts来绘制二维和三维场景下的散点图的过程,为了便于代码组织,这篇文章中的代码是在src目录下新建了一个scatterDiagram
它们两个编程语言的可视化体系也非常复杂,目前主流的是R的ggplot2和Python的matplotlib、seaborn,我们来分开介绍一下: ggplot2绘图体系的核心思想是将数据映射到图形属性上...matplotlib是Python中最常用的绘图库之一,它提供了广泛的绘图功能,可以创建各种类型的图形,包括线图、散点图、柱状图、饼图、等高线图等。...这使得用户可以方便地将图形用于报告、论文或网页等不同的应用场景。 丰富的图形类型:matplotlib支持绘制多种类型的图形,包括线图、散点图、柱状图、饼图、等高线图、热力图等。...它提供了许多用于绘制统计图表的高级函数,如散点图、直方图、小提琴图和回归图等。 美观的默认样式:Seaborn具有吸引人的默认绘图样式和颜色主题,使图表在外观上更具吸引力。...尽管不同的包或库的绘制风格不同,但它们的绘制过程是一致的,如下图所示: 先画出图的大致轮廓,再根据需求,添加更多的细节和细节调整,一张完美的图就出来了啊!
一个简单的命令行界面让你启动、停止、暂停或销毁你的“盒子”。 考虑一下这个简单的例子。 假设你想写 Ansible 或 shell 脚本,在一个新的服务器上安装 Nginx。...不会再有“但它在我的机器上运行良好!”这事了。 开始使用 首先,在你的系统上安装 Vagrant,然后创建一个新的文件夹进行实验。...在我们的例子中,Vagrant 从 Hashicorp 的 Vagrant 目录下载 ubuntu/hirsuite64 镜像,并插入 VirtualBox 来创建实际的“盒子”。...vagrant halt:关闭当前的“盒子”。 vagrant destroy:销毁当前的“盒子”。通过运行此命令,你将失去存储在“盒子”上的任何数据。...如果你不开发软件,但你喜欢尝试新版本的操作系统,那么没有比这更简单的方法了。今天就试试 Vagrant 吧! 这篇文章最初发表在 作者的个人博客 上,经许可后被改编。
基于Matlab的GUI设计不同阻尼的系统响应 h0=figure('toolbar','none',... 'position',[198 56 350 468],...
=m) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() 以上是官网上的代码示例及演示结果...mpl_toolkits.mplot3d import Axes3D 然后绘图: ax = plt.figure().add_subplot(111, projection = '3d') #基于ax变量绘制三维图...#xs表示x方向的变量 #ys表示y方向的变量 #zs表示z方向的变量,这三个方向上的变量都可以用list的形式表示 #m表示点的形式,o是圆形的点,^是三角形(marker) #c表示颜色(color...ax.set_zlabel('Z Label') #显示图像 plt.show() 注: 上面的 ax = plt.figure().add_subplot(111, projection = '3d') 是下面代码的略写...fig = plt.figure() ax = fig.add_subplot(111, projection = '3d') 如果我有一个df包含5列f1,f2,f3,f4,y 的数据框 可以这样引用
本文将记录我在多个不同的机器上,在不同的 CPU 型号上,执行相同的我编写的 dotnet 的 Benchmark 的代码,测试不同的 CPU 型号对 C# 系的优化程度。...本文非严谨测试,数值只有相对意义 以下是我的测试结果,对应的测试代码放在 github 上,可以在本文末尾找到下载代码的方法 我十分推荐你自己拉取代码,在你自己的设备上跑一下,测试其性能。...且在开始之前,期望你已经掌握了基础的性能测试知识,避免出现诡异的结论 本文的测试将围绕着尽可能多的覆盖基础 CPU 指令以及基础逻辑行为。...本文的测试重点不在于 C# 系的相同功能的多个不同实现之间的性能对比,重点在于相同的代码在不同的 CPU 型号、内存、系统上的性能差异,正如此需求所述,本文非严谨测试,测试结果的数值只有相对意义 数组创建...如此可以看到其实也不能全怪兆芯,只是因为 Intel 的优化比较强,导致看起来差异比较大 在数组长度比较大的时候,在 兆芯 上也是 memcpy 会比 for 循环拷贝更快。
领取专属 10元无门槛券
手把手带您无忧上云