首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在tensorflow2.2中使用Keras自定义模型的指标度量

使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...我们在这里讨论的是轻松扩展keras.metrics的能力。用来在训练期间跟踪混淆矩阵的度量,可以用来跟踪类的特定召回、精度和f1,并使用keras按照通常的方式绘制它们。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...keras.Sequential)、编译并训练一个顺序模型(处理函数和子类化API的过程非常简单,只需实现上面的函数)。...最后做一个总结:我们只用了一些简单的代码就使用Keras无缝地为深度神经网络训练添加复杂的指标,通过这些代码能够帮助我们在训练的时候更高效的工作。

2.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    防止在训练模型时信息丢失 用于TensorFlow、Keras和PyTorch的检查点教程

    检查点策略 你可以根据你正在执行的训练类型,采用不同的检查点策略。...通常,有一个固定的最大数量的检查点,这样就不会占用太多的磁盘空间(例如,将你最大的检查点数量限制在10个,新的位置将会取代最早的检查点)。...我将向你展示如何在TensorFlow、Keras和PyTorch这三个流行的深度学习框架中保存检查点: 在开始之前,使用floyd login命令登录到FloydHub命令行工具,然后复刻(fork)...(在Python3.0.6上的Tensorflow 1.3.0 + Keras 2.0.6) –data标记指定pytorch-mnist数据集应该在/inputdirectory中可以使用 –gpu标记实际上是可选的...注意:这个函数只会保存模型的权重——如果你想保存整个模型或部分组件,你可以在保存模型时查看Keras文档。

    3.2K51

    Pycharm安装使用TensorFlow

    /pycharm/download/ 2.安装Anaconda,初学者不用急于安装最新版本的Anaconda(尤其是硬件设备并非最新的初学者,因为我注意到很多初学者的设备就是自己的笔记本或者台式机,一些并没有独立显卡...,或者是NVIDIA 730之类的台式机显卡,无法使用最新的深度学习包,以及一些CUDA,cuDNN等,这就直接导致了无法使用TensorFlow 2.4.0或更高本版,而Keras每个版本依赖的TensorFlow.../guides/environments/,安装方法可以直接在pycharm的terminal中使用pip安装,比如安装TensorFlow 2.1.0版本可以使用命令pip install tensorflow...==2.1.0,安装Keras 2.3.1可以使用命令pip install keras==2.3.0 4.这个时候可以使用一下代码测试keras和TensorFlow安装是否成功 import tensorflow...import keras print(tensorflow.

    3K40

    Keras vs tf.keras: 在TensorFlow 2.0中有什么区别?

    在TensorFlow 2.0中,您应该使用tf.keras而不是单独的Keras软件包。...您可以使用MySQL,PostgreSQL或SQL Server作为数据库。但是,用于与数据库进行交互的PHP代码不会更改(当然,前提是您使用的是某种抽象数据库层的MVC范例)。...但是,作为Keras用户,对您来说最重要的收获是,您应该在将来的项目中使用TensorFlow 2.0和tf.keras。 在以后的所有项目中开始使用tf.keras ?...计算backend在构建模型图,数值计算等方面执行所有“繁重的工作”。 然后Keras作为abstraction坐在此计算引擎的顶部,使深度学习开发人员/从业人员更容易实现和训练他们的模型。...首先重要的一点是,使用keras软件包的深度学习从业人员应该开始在TensorFlow 2.0中使用tf.keras。

    2.7K30

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    尽管直接使用TensorFlow可能具有挑战性,但现代的tf.keras API使得Keras在TensorFlow项目中的使用简单易用。...在本教程中,您将找到使用tf.keras API在TensorFlow中开发深度学习模型的分步指南。...TensorFlow教程概述 本教程旨在为您的深度学习项目提供tf.keras的完整介绍。 重点是将API用于常见的深度学习模型开发任务;我们不会深入研究深度学习的数学和理论。...目前,我们建议使用TensorFlow后端的多后端Keras的Keras用户在TensorFlow 2.0中切换到tf.keras。...Devices: StreamExecutor device (0): Host, Default Version 这些是信息性消息,不会阻止您执行代码。您现在可以忽略此类型的消息。

    1.6K30

    Python安装TensorFlow 2、tf.keras和深度学习模型的定义

    尽管直接使用TensorFlow可能具有挑战性,但现代的tf.keras API使得Keras在TensorFlow项目中的使用简单易用。...在本教程中,您将找到使用tf.keras API在TensorFlow中开发深度学习模型的分步指南。...TensorFlow教程概述 本教程旨在为您的深度学习项目提供tf.keras的完整介绍。 重点是将API用于常见的深度学习模型开发任务;我们不会深入研究深度学习的数学和理论。...目前,我们建议使用TensorFlow后端的多后端Keras的Keras用户在TensorFlow 2.0中切换到tf.keras。...Devices:StreamExecutor device (0): Host, Default Version 这些是信息性消息,不会阻止您执行代码。您现在可以忽略此类型的消息。

    1.5K30

    深度学习框架对决篇:Keras VS PyTorch

    定义模型的类 vs 函数 Keras 在定义模型时提供函数式 API。通过函数式 API,神经网络被定义为一组序列函数,然后一个接一个地得到应用。...因而,你在默认设置下就足以入门。但当你想要实现一个非常先进或「独特的」模型时,才真正需要深入了解低级和本质的 TensorFlow。...当然,如果你不需要实现任何独特的内容,则 Keras 也表现的非常好,因为你不会遇到任何 TensorFlow 障碍。但如果想要实现一些独特的内容,则 PyTorch 可能会表现得更加平滑。...并且如果你想在 CPU 和 GPU 之间来回移动以执行不同运算,则很容易出错。 例如,为了将之前的模型转移到 GPU 上运行,则需要以下步骤: ?...使用 PyTorch 需要进行一些额外操作,但这不会减缓你的进程。你依然能够快速实现、训练和测试网络,并享受简单调试带来的额外益处。 ?

    81621

    2019机器学习框架之争:与Tensorflow竞争白热化,进击的PyTorch赢在哪里?

    与此同时,在工业领域,TensorFlow是首选平台,但这种情况可能不会持续很久。 PyTorch在研究领域日益占据主导地位 首先当然是先用数据说话。...需要包罗万象的功能:不用停机更新的模型,在模型之间无缝切换,批处理在预测时间,等等。...Torchscript是PyTorch的“图”表示。你可以通过使用跟踪或脚本模式将常规PyTorch模型转换为TorchScript。跟踪接受一个函数和一个输入,记录用该输入执行的操作,并构造IR。...在默认启用Eager模式时,TensorFlow将强迫用户做出选择——为了便于使用而Eager执行,并且需要为部署而重写,或者根本不使用急于执行。...不仅框架发生了变化,5年来使用的模型、硬件、范式与我们今天使用的截然不同。未来也许PyTorch和TensorFlow之间的战争将变得无关紧要,因为另一种计算模型或将占据主导地位。

    72731

    「决战紫禁之巅」之深度学习框架篇:Keras VS PyTorch

    定义模型的类 vs 函数 Keras 在定义深度学习模型时提供函数式 API。通过函数式 API,神经网络被定义为一组序列函数,然后一个接一个地得到应用。...因而,你在默认设置下就足以入门。但当你想要实现一个非常先进或「独特的」模型时,才真正需要深入了解低级和本质的 TensorFlow。...当然,如果你不需要实现任何独特的内容,则 Keras 也表现的非常好,因为你不会遇到任何 TensorFlow 障碍。但如果想要实现一些独特的内容,则 PyTorch 可能会表现得更加平滑。...并且如果你想在 CPU 和 GPU 之间来回移动以执行不同运算,则很容易出错。 例如,为了将之前的模型转移到 GPU 上运行,则需要以下步骤: ?...使用 PyTorch 需要进行一些额外操作,但这不会减缓你的进程。你依然能够快速实现、训练和测试网络,并享受简单调试带来的额外益处。 ?

    72140

    Keras还是TensorFlow?深度学习框架选型实操分享

    在 TensorFlow 中结合 Keras 使用,会有双赢效果: 你可以使用 Keras 提供的简单、原生 API 来创建自己的模型。...作为后端的 Keras 模型 方法 2 :使用 tf.keras 中 Keras 子模块 在介绍的过程中我还会展示如何把自定义的 TensorFlow 代码写入你的 Keras 模型中。...虽然这不是最先进的模型,但它能比随机猜测 (1/10) 要好得多。 相比起小型的神经网络,我们模型的结果实际上是非常好的! 此外,正如我们在输出图6中所示,我们模型并不会发生过拟合现象。...你可以在 TensorFlow 中的 tf.keras 模块,使用一行代码来将 CRELU 函数添加到我们的 Keras 模型中。...然后,打开一个终端并执行以下命令就可以使用 tensorflow + tf.keras 训练一个神经网络模型: 训练完成后,你可以得到如上类似的训练结果图: 用 Tensorflow + tf.keras

    1.7K30

    TensorFlow 2.0中的tf.keras和Keras有何区别?为什么以后一定要用tf.keras?

    我应该使用 keras 软件包来训练自己的神经网络,还是在 TensorFlow 2.0 中使用 tf.keras 子模块?...你可以使用 MySQL,PostgreSQL 或者 SQL Server 作为你的数据库;但是,用于与数据库交互的 PHP 代码是不会变的(当然,前提是使用某种可以封装数据库层的 MVC 范例)。...在 tf.keras 使用 Keras API 的 TensorFlow 1.10+用户应该对在训练模型时创建一个 Session 很熟悉: ?...eager execution 的好处是不需要提前构建整个模型图了。 相反,运算会被立刻执行(即 eager execution),这也使得模型的构建以及调试变得更容易。...一旦你的研究和实验完成,你就可以利用 TFX 为生产准备模型,并使用谷歌的生态系统扩展你的模型。 有了 TensorFlow 2.0,我们在研究、实验、模型准备、量化和生产部署之间架起了高效的桥梁。

    9.8K30

    为什么要用 PyTorch、TensorFlow 框架

    虽然急切执行模式在TensorFlow中刚刚出现,但其是PyTorch唯一的运行方式:API在被调用时会立即执行,而不会被添加到计算图稍后再运行。...高效地使用TensorFlow 2.0方法是,使用高级的tf.keras API(而不是旧的低级AP,这样可以大大减少需要编写的代码量。...转换器可以将TensorFlow模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。 TensorFlow Extended(TFX)是用于部署生产机器学习管道的端到端平台。...TensorFlow是Keras的默认后端,在很多情况下我们也推荐使用TensorFlow,包括通过CUDA和cuDNN在Nvidia硬件上实现GPU加速,以及利用Google Cloud中的Tensor...另外,它还有Scikit-learn API,因此你可以利用Scikit-learn网格搜索在Keras模型中执行超参数优化。 ?

    1.1K21

    掌握深度学习,为什么要用PyTorch、TensorFlow框架?

    虽然急切执行模式在 TensorFlow 中刚刚出现,但其是 PyTorch 唯一的运行方式:API 在被调用时会立即执行,而不会被添加到计算图稍后再运行。...高效地使用 TensorFlow 2.0 方法是,使用高级的 tf.keras API(而不是旧的低级 AP,这样可以大大减少需要编写的代码量。...转换器可以将 TensorFlow 模型转换为高效的形式供解释器使用,还可引入优化以缩小可执行文件大小并提高性能。...TensorFlow是Keras的默认后端,在很多情况下我们也推荐使用TensorFlow,包括通过 CUDA 和 cuDNN 在 Nvidia 硬件上实现 GPU 加速,以及利用 Google Cloud...另外,它还有 Scikit-learn API,因此你可以利用 Scikit-learn 网格搜索在 Keras 模型中执行超参数优化。

    1.5K10

    Colab提供了免费TPU,机器之心帮你试了试

    该方法在输入 Keras 模型和在多个 TPU 核心上的训练策略后,能输出一个 Keras TPU 模型的实例,且可分配到 TPU 进行运算。...这个模型是基于 Keras 构建的,因为除了模型转换与编译,Keras 模型在 TPU 和 GPU 的训练代码都是一样的,且用 Keras 模型做展示也非常简洁。...如下所示,keras_to_tpu_model 方法需要输入正常 Keras 模型及其在 TPU 上的分布式策略,这可以视为「TPU 版」的模型。...完成模型的转换后,只需要像一般 Keras 模型那样执行编译并拟合数据就可以了。...最后,Colab 确实提供了非常强劲的免费 TPU,而且使用 Keras 或 TPUEstimator 也很容易重新搭建或转换已有的 TensorFlow 模型。

    2.3K30

    TensorFlow的新生!

    Keras 是一个逐层构建模型的规范,它与多个机器学习框架一起工作(所以它不是 TF 的工具),但你可能知道从 TensorFlow 中可以访问其高级 API tf.keras。 ?...所有 TensorFlow 都具备 Keras 的易用性,可在各种规模和各种硬件上使用。 ? 在新版本中,所有你最讨厌的 TensorFlow1.x 特性都没有了。...TF 2.0 对每个人来说都是一个新的开始。 简单到一个就足够 许多 API 在 TensorFlow Keras 下得到了整合,所以现在你更容易知道什么时候应该使用什么。...事实上,整个工具生态系统得到了一次大扫除,从数据处理流程到简单的模型导出,再到 TensorBoard 与 Keras 的集成,现在只要一行即可实现! ?...这个计划不会强迫你永远使用未磨好的「原石」,但也许你已经习惯了这种不舒服,你没有意识到这是暂时的。感谢你的耐心等待! 我们不会放弃性能!

    53530

    TensorFlow 2.0入门

    这是一个用于构建和训练模型的高级API,其中包括对TensorFlow特定功能的一流支持,例如动态图和tf.data管道。tf.keras使TensorFlow更易于使用而不会牺牲灵活性和性能。...编译和训练模型 在Keras中,编译模型只是将其配置为训练,即它设置在训练期间使用的优化器,损失函数和度量。为了训练给定数量的时期(数据集的迭代)的模型,.fit()在model对象上调用该函数。...使用Matplotlib绘制图形: 训练和验证指标在训练在Keras的简单CNN的所有层之后 这些图表深入了解了模型的训练程度。有必要确保训练和验证准确度增加,损失减少。...TensorFlow提供SavedModel格式作为导出模型的通用格式。在引擎盖下,Keras模型完全按照TensorFlow对象进行指定,因此可以将其导出得很好。...它还使能够对卷积神经网络模型进行有效的训练。 使用tf.keras不仅从头开始构建CNN,而且还能够重复使用预先训练好的网络,在短时间内在鲜花数据集上获得更高的准确度。

    1.8K30

    4大场景对比Keras和PyTorch

    PyTorch介于Keras和TensorFlow之间,比Keras拥有更灵活、更好的控制力,与此同时用户又不必做任何疯狂的声明式编程。 深度学习练习者整天都在争论应该使用哪个框架。...与Keras类似,PyTorch提供了层作为构建块,但由于它们位于Python类中,因此它们在类的__init __()方法中引用,并由类的forward()方法执行。...当然,如果不需要实现任何花哨的东西,那么Keras会做得很好,因为你不会遇到任何TensorFlow路障。 训练模型 ? 在Keras上训练模型非常容易!一个简单的.fit()走四方。...同时,由于这些模型训练步骤在训练不同模型时基本保持不变,因此非常不必要。 控制CPU与GPU模式 ? 如果安装了tensorflow-gpu,默认情况下在Keras中启用并完成使用GPU。...选择框架的建议 Seif通常给出的建议是从Keras开始,毕竟又快、又简单、又好用!你甚至可以执行自定义图层和损失函数的操作,而无需触及任何一行TensorFlow。

    1.1K30

    文末福利 | 深度学习框架Keras与Pytorch对比

    但是在选择Keras和Pytorch时,你应该记住它们的几个方面。 (1)定义模型的类与函数 为了定义深度学习模型,Keras提供了函数式API。...与Keras类似,Pytorch提供给你将层作为构建块的能力,但是由于它们在Python类中,所以它们在类的init_()方法中被引用,并由类的forward()方法执行。...当然,如果你从来不需要实现任何奇特的东西,那么Keras就会做得很好,因为你不会遇到任何TensorFlow的障碍。但是如果你有这个需求,那么Pytorch将会是一个更加好的选择。...(4)控制CPU与GPU模式的比较 如果你已经安装了tensorflow-gpu,那么在Keras中使用GPU是默认启用和完成的。如果希望将某些操作转移到CPU,可以使用以下代码。...Keras绝对是最容易使用、理解和快速上手并运行的框架。你不需要担心GPU设置,处理抽象代码,或者做任何复杂的事情。你甚至可以在不接触TensorFlow的任何一行的情况下实现定制层和损失函数。

    1.7K20
    领券