首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Day7:R语言课程 (R语言进行数据可视化)

1.设置数据框以进行可视化 在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。 观察rpkm数据。...我们将从new_metadata数据框为例,绘制的一个samplemeans和age_in_days的散点图,。ggplot2默认输入是数据框。...这是因为每种类型的geom通常都具有一组必需的映射。映射使用aes()函数设置,并且可以在geom_point()内部设置以专门应用于该层。...ggscatter1 有了必须的映射,再为图片添加一些可选的映射,比如颜色。通过指定列标题来,按照基因型给点上色。自动使用一组默认颜色,不必指定。此外,ggplot2还自动绘制了图例!...尝试不同的东西,在图上同时显示细胞类型和基因型。为此,我们可以为列标题指定shape映射,不同形状表示不同的celltype。

6K10

阿丘科技之AIDI高级应用讲解一(5)

创建混合图像工程: 在创建工程时选择图片格式混合图,设置图片数 混合图合成导入 通过对一组拍摄同一物体的图片进行合成得到一张多通道图像并导入模块。...3D视图显示区中 模型旋转 在3D视图中按住鼠标左键拖动调节视角 区域映射 在3D视图中选择一矩形区域,将此矩形区域在标准图片显示区中渲染位矩形框,(目前仅渲染类型为点时可用) 5.4.5..../绘制) 填充图案/填充透明度/边框颜色/边框宽度/边框线型 全图掩模(常规/绘制) 填充图案/填充透明度/边框颜色/边框宽度/边框线型 ✳对于ROI,填充颜色指矩形框外侧的区域 ✳类别文字的颜色与缺陷标注边框颜色相同...5.7 数据划分 划分训练集和测试集: 训练前需要将图片加入训练集(图片列表中绿色三角标记),训练会学习训练集中的图片 A 手动划分:在图片列表中选中一张或多张图片,右键>>加入训练集/移出训练集 B...图片列表中图片左上角序号底色为绿色时,代表此图标注为OK图 5.8 导出数据 导出原图:在图片列表中选中图上右键导出原图。 导出标注数据:在图片列表中选中图上右键导出训练集测试集。

3.5K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    生信技能树七天学习小组 Day4笔记——R语言基础

    1.1准备工作ggplot2是tidyverse的一个核心R包,首先需要加载tidyverselibrary(tidyverse)此处用到内置数据mpg(mpg是一个数据框)复习数据框的概念:变量(列)...和观测(行)的矩形集合,数据框每一列都有一个唯一的列名,长度相等,同一列的数据类型需要一致,不同列的数据类型可以不一致。...(2)数据集mpg中有多少行?多少列?“能用代码解决的问题就不要手动去数”mpg直接查看dim(mpg)都可以解决(3)变量drv的意义是什么??mpg(4)使用hwy和cyl绘制一张散点图。...图形属性映射1.3.1 基本定义将数据集中的变量(列)映射为图形的属性(图中对象的可视化属性:数据点的大小、形状和颜色)将图中点的颜色映射为变量class,来显示每辆汽车的类型:ggplot(data...(6)在使用函数facet_grid()时,一般应该将具有更多唯一值的变量放在列上。为什么这么做呢?

    26220

    (数据科学学习手札37)ggplot2基本绘图语法介绍

    、形状或大小等图形属性的一个映射,其中还可能包含对数据进行统计变换(如求均值或方差),最后将这个映射绘制在一定的坐标系中就得到了我们需要的图形。...),qplot还提供了参数data,控制传入的数据框名称,这样在qplot()中涉及数据框中变量的参数就可以直呼其名而不用加$;   在介绍qplot能够绘制的其他几何图像之前,我们先来理解一下其默认的模式...,它以数据的五数概括作为特征对数据进行可视化,在qplot中,当传入x为类别型变量,y为数值型变量时,通过传入geom='boxplot',可以绘制出分组箱线图,例如下面绘制钻石颜色color与每颗钻石每克拉价格...qplot()进行绘图,其局限性是只能使用在qplot()中定义的一个数据集和对应的一组图形属性映射,若希望将不同的数据通过不同的图层构建方式来展现在一张图上,就需要使用ggplot()函数,该函数有两个主要的参数...,对应了数据和图形属性映射,这两个参数将作为接下来绘图的默认参数,直到在新加的图层中设定了新的参数,默认值才会被修改‘;其中,数据指定绘图所使用的默认数据框且必须是数据框;映射的设定则与qplot非常相似

    7K50

    origin绘图过程的一些经验

    6.在已经画好的图形旁边的空白可以对线颜色和粗细进行调整,双击点可以对数据点进行相关修改。...9.批量绘图:如果你有同样类型的几组数据,并且要通过他们绘制同样xy轴的图形,则可以先用一组数据绘出一幅图,再点击 可以选择以同样的格式对其他book或者其他列进行批量绘图。...10.模板:将绘制好的一张图右键点击图表上方的对话框头再点存为模板后即可以在“绘图”里边的模板中找到并使用。 11.复制格式: 一张图做的很美观,另一张图可以复制它的格式。...首先在第一张图上右击空白处,点“复制格式”然后再到第二张图上右击空白再点复制格式下边那个。将格式存为主题可以后调用。...在对话框的左侧可以看到图层中的详细信息,我们可以在红框中发现一个带数字的小图层标记,这就是我们刚才选中的点,可以对他在右边的【符号】选项设置不同的形状和颜色,透明度等。

    4.7K10

    【Python】机器学习之PCA降维

    PCA的工作原理是找到数据中方差最大的方向,将数据映射到这个方向上,形成第一个主成分。然后,在与第一个主成分正交的方向上找到第二大方差的方向,形成第二个主成分,依此类推。...8.显示结果: 创建一个1行3列的子图布局,用于在同一画布上显示原始人脸图像、重建的人脸图像和模糊的人脸图像。...axs[0].imshow(face, cmap='gray'):在第一个子图上显示原始人脸图像,使用灰度颜色映射。...axs[1].imshow(face_restored, cmap='gray'):在第二个子图上显示重建的人脸图像,使用灰度颜色映射。...`axs[2].imshow(face_blur, cmap 'gray')`:在第三个子图上显示模糊的人脸图像,使用灰度颜色映射。

    69910

    用Python绘制地理图

    当您的数据包含地理信息时,丰富的地图可视化可以为您理解数据和解释分析结果的最终用户提供重要价值。 ? Plotly Plotly是一个著名的库,用于在Python中创建交互式绘图和仪表板。...在这里,我们有3列,并且所有列都有219个非空条目。 ? ? 将我们的数据编译成字典 ? type ='choropleth':定义地图的类型,即这种情况下的choropleth。...布局 -一个Geo对象,可用于控制 在其上绘制数据的基础地图的外观 。 这是一本嵌套的字典,其中包含有关地图/绘图外观的所有相关信息。 生成图/图 ? ?...数据在一个特定区域中越集中,地图上的颜色阴影越深。“中国”的耗电量最大,因此其颜色最深。 密度图 密度映射只是一种显示点或线可能集中在给定区域中的方式。...在这里,我们有4列,并且所有列都有23412个非空条目。 ? ? 绘制数据 ? lat ='Latitude':获取数据框的“纬度”列。 lon ='Longitude':获取数据框的经度列。

    2.2K20

    R绘图笔记 | 一般的散点图绘制

    ,并将气泡的颜色和面积映射到残差的绝对值 scale_fill_continuous(low = "black", high = "blue") + #填充颜色映射到蓝色单色渐变系 geom_smooth...等; col # 未分组时,直接指定绘制颜色;分组时,设置参数长度应等于组数的颜色向量; pch # 点的绘图符号;分组时默认按顺序使用字符; library(car) scatterplot(Volume...## 部分参数解释 data, x, y # data指数据框,x、y为数据框中用来绘制图形的变量 combine # 逻辑词,默认FALSE,仅当y是包含多个变量的向量时使用;如为TRUE,则创建组合面板图...、ylab # 指定x轴、y轴的标签;当xlab = FALSE时隐藏标签,y轴同 facet.by # 长度为1-2的字符向量,指定绘制分面的分组向量,分组向量应在数据框中 panel.labs...参考资料: 1.R语言数据可视化之美,张杰/著 2.scatterplot()函数帮助文件 3.ggscatter()函数帮助文件

    5.3K20

    推荐:这才是你寻寻觅觅想要的 Python 可视化神器

    在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让你直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...甚至是 动画帧到数据框(dataframe)中的列。...这种方法的强大之处在于它以相同的方式处理所有可视化变量:你可以将数据框列映射到颜色,然后通过更改参数来改变你的想法并将其映射到大小或进行行分面(facet-row)。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:你整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    5K10

    Pathview包:整合表达谱数据可视化KEGG通路

    参考代谢通路图 reference pathway,是根据已有的知识绘制的具有一般参考意义的代谢图;这种图上所有小框都是无色的,不会有绿色的小框,并且都可以点击查看更详细的信息; 特定物种的代谢图 species-specific...当数据映射到KEGG ortholog pathways时,它可以直接用于宏基因组、微生物组或未知物种的数据。 化合物和基因集同时绘制在通路上 在上面的例子中,我们查看了具有典型的信号通路的基因数据。...从1.1.6版开始,Pathview就可以整合并绘制多状态或样本到一个图中。...我们可以把所有这些样品放在一张图里,绘制KEGG视图或Graphviz视图。...如果两种数据类型中的样本实际配对,需要选择匹配数据,即gene.data和cpd.data的第一列来自同一个实验/样本,等等。

    10.1K32

    这才是你寻寻觅觅想要的 Python 可视化神器

    在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...甚至是 动画帧到数据框(dataframe)中的列。...这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    3.7K20

    这才是你寻寻觅觅想要的 Python 可视化神器!

    在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...甚至是 动画帧到数据框(dataframe)中的列。...这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    4.2K21

    强烈推荐一款Python可视化神器!

    在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column...甚至是 动画帧到数据框(dataframe)中的列。...这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。...仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等

    4.4K30

    Python实践:seaborn的散点图矩阵(Pairs Plots)可视化数据

    Seaborn的散点图矩阵(Pairs Plots) 在开始之前,我们需要知道我们有什么数据。我们可以将社会经济数据用熊猫(Pandas)数据框加载并查看列: ?...每行数据代表一个国家在一年内的结果,列中包含变量(这种格式的数据称为整洁数据)。有2个分类专栏(国家和大陆)和4个数字专栏。...作为pairplot默认的最后一个例子,让我们通过绘制2000年后的年份来减少数据混乱。我们仍然会按照大陆分布着色,但现在我们不会绘制年份列。为了限制绘制的列,我们将一个列表传递vars给函数。...为此,我会编写一个函数,它接受两个数组、计算统计量,然后在图上绘制它。...相关系数现在出现在散点图上方。这是一个相对直接的例子,但我们可以使用PairGrid将我们想要的任何函数映射到图上。我们可以根据需要添加尽可能多的信息,只要我们能够弄清楚如何编写函数!

    3.5K20

    R语言使用自组织映射神经网络(SOM)进行客户细分

    输入空间中的每个样本都“映射”或“链接”到网格上的节点。一个节点可以代表多个输入样本。 SOM的关键特征是原始输入数据的拓扑特征保留在图上。...这意味着将相似的输入样本(其中相似性是根据输入变量(年龄,性别,身高,体重)定义的)一起放置在SOM网格上。例如,所有高度大约为1.6m的55岁女性将被映射到网格同一区域中的节点。...理想情况下,相似年龄的人应该聚集在同一地区。 下图使用两个热图说明平均教育水平和失业率之间的关系。 ? SOM算法 从样本数据集生成SOM的算法可总结如下: 选择地图的大小和类型。...# 在R中创建自组织映射 # 创建训练数据集(行是样本,列是变量 # 在这里,我选择“数据”中可用的变量子集 data_train <- data[, c(3,4,5,8)] #...将带有训练数据的数据框更改为矩阵 #同时对所有变量进行标准化 #SOM训练过程。

    2.1K00

    使用自组织映射神经网络(SOM)进行客户细分|附代码数据

    输入空间中的每个样本都“映射”或“链接”到网格上的节点。一个节点可以代表多个输入样本。 SOM的关键特征是原始输入数据的拓扑特征保留在图上。...这意味着将相似的输入样本(其中相似性是根据输入变量(年龄,性别,身高,体重)定义的)一起放置在SOM网格上。例如,所有高度大约为1.6m的55岁女性将被映射到网格同一区域中的节点。...理想情况下,相似年龄的人应该聚集在同一地区。 下图使用两个热图说明平均教育水平和失业率之间的关系。 SOM算法 从样本数据集生成SOM的算法可总结如下: 选择地图的大小和类型。...在地图上找到“最佳匹配单位”(BMU)–最相似的节点。使用欧几里德距离公式计算相似度。 确定BMU“邻居”内的节点。 –邻域的大小随每次迭代而减小。 所选数据点调整BMU邻域中节点的权重。...# 在R中创建自组织映射 # 创建训练数据集(行是样本,列是变量 # 在这里,我选择“数据”中可用的变量子集 data_train <- data[, c(3,4,5,8)] #将带有训练数据的数据框更改为矩阵

    1.2K30

    Google Earth Engine (GEE) ——Earth Engine Explorer (EE Explorer)使用最全解析(8000字长文)

    请注意,某些数据集只能以特定缩放级别显示。例如,如果您一直放大到具有 Landsat 8 数据集的全局视图,它将在地图上不可见。别担心,它没有坏!地图顶部会出现一个黄色条,表示您需要放大才能查看数据。...有关更多信息,请参阅下面的可视化随时间变化的部分。 重新排序图层 当您的地图上有多个数据集可见时,列在数据列表顶部的数据集将绘制在其下方的数据集之上。...关闭图层设置对话框,然后将 MCD43A4 最低点反射率数据移动到数据列表的顶部或更改图层的可见性,使其显示在地图上。 单击其名称以显示图层设置。...调色板 调色板允许您为数据集中的值范围分配颜色以进行单波段(灰度)显示。调色板是一系列十六进制颜色值。提供两个值明确地设置数据集定义的最小值和最大值的颜色,并且中间的所有值都映射到颜色渐变的线性插值。...打开和关闭顶层的可见性,您将看到这座城市在 26 年期间的增长。 如您所见,在上面的两张图片之间查看时,2011 年的图片比 1986 年的图片具有更大的城市面积。

    49210

    Origin绘图配色指南

    有意义的颜色 显示分组 用不同颜色表达区别 用相近颜色表示同一分组 用配色展现逻辑关系,突出关键数据 相似色 同一色系或者色轮上相邻 多个数据不要超过三个色系 (建议多用内置颜色或者参考成熟的配色方案...) 根据图面积选择 大面积的图用柔和的颜色(柱状图/面积图) 小面积的图用强烈的颜色 (折线图/散点图) 绘图指南 柱状图 选中两列Y与一列X绘制柱状图 多人图标修改整体配色,单人修改单个数据列...绘图细节设置对话框 对比 分组柱状图 绘制分组柱状图时,必须有一个Y列用来标记分组的组号(如下图所示)。...分组组号设置 选择绘制图形类型 绘图细节对话框 数据与图形对应关系 Tips: 如何对颜色进行不同的分组?...简单散点图 数据结构 第一步:绘制普通散点图 第二步:设置绘图细节对话框 第三步:颜色映射到D列 最终出图

    12.4K10

    使用自组织映射神经网络(SOM)进行客户细分

    输入空间中的每个样本都“映射”或“链接”到网格上的节点。一个节点可以代表多个输入样本。 SOM的关键特征是原始输入数据的拓扑特征保留在图上。...这意味着将相似的输入样本(其中相似性是根据输入变量(年龄,性别,身高,体重)定义的)一起放置在SOM网格上。例如,所有高度大约为1.6m的55岁女性将被映射到网格同一区域中的节点。...理想情况下,相似年龄的人应该聚集在同一地区。 下图使用两个热图说明平均教育水平和失业率之间的关系。 SOM算法 从样本数据集生成SOM的算法可总结如下: 选择地图的大小和类型。...在地图上找到“最佳匹配单位”(BMU)–最相似的节点。使用欧几里德距离公式计算相似度。 确定BMU“邻居”内的节点。 –邻域的大小随每次迭代而减小。 所选数据点调整BMU邻域中节点的权重。...# 在R中创建自组织映射 # 创建训练数据集(行是样本,列是变量 # 在这里,我选择“数据”中可用的变量子集 data_train <- data\[, c(3,4,5,8)\] #将带有训练数据的数据框更改为矩阵

    1.2K30

    百川归海,四类图统揽统计图:Seaborn|可视化系列03

    relplot的参数如下: •data、x、y:分别是数据集、x轴对应值(data里的某一列的列名)、y轴对应值;•hue:色调,对数据的一种分类,通过颜色进行区分;如何指定颜色映射的规则呢?...我们也关心数据列内部的分布,是平均分布、随机分布还是聚集分布??是每天花钱一样多还是某天就花了预算的80%?...对于单一变量,我们可以统计出其在列中的出现次数,绘制柱状图、饼图等,用Matplotlib绘制需要自己做数据透视或value_counts()操作。...catplot参数: •data、x、y:分别对应数据集、x轴对应值、y轴对应值,x会默认是一个分类变量,不是连续的数值;•hue:色调,将数据列映射到颜色;•orient:水平方向还是垂直方向上的分类...小提琴图比起箱线图,更好地利用宽度的变化来展现在同一个y处数据点的分布,绘制的形状像一个小提琴因此叫小提琴图(violin)。

    3.1K30
    领券