在本教程中,你将发现如何诊断 LSTM 模型在序列预测问题上的拟合度。完成教程之后,你将了解: 如何收集 LSTM 模型的训练历史并为其画图。 如何判别一个欠拟合、较好拟合和过拟合的模型。...例如,如果你的模型被编译用来优化 log loss(binary_crossentropy),并且要在每一个 epoch 中衡量准确率,那么,log loss 和准确率将会在每一个训练 epoch 的历史记录中被计算出...每一个得分都可以通过由调用 fit() 得到的历史记录中的一个 key 进行访问。默认情况下,拟合模型时优化过的损失函数为「loss」,准确率为「acc」。...良好拟合实例 良好拟合的模型就是模型的性能在训练集和验证集上都比较好。 这可以通过训练损失和验证损失都下降并且稳定在同一个点进行诊断。 下面的小例子描述的就是一个良好拟合的 LSTM 模型。...过拟合实例 过拟合模型即在训练集上性能良好且在某一点后持续增长,而在验证集上的性能到达某一点然后开始下降的模型。 这可以通过线图来诊断,图中训练损失持续下降,验证损失下降到拐点开始上升。
ReLU:使得我们的激活函数导数为1 LeakyReLU:ReLU的优化,同时解决了ReLu中0区间带来的影响 2)使用ResNet残差结构 其实为了解决梯度消失和爆炸问题,BN(Batch Normalization...)结构也可以顺利解决,BN层对每层的输出做归一化,这样梯度在反向层层传递后仍可以保持大小稳定,不会出现过小或过大的问题,但BN在深度不断增大后会出现一个问题:Degradation Problem(准确率下降问题...进一步解释,也就是说LSTM的状态转移不一定全部由激活函数的计算结果,还得依赖于输入门与遗忘门来共同控制,如: 在一个训练好的网络中,当输入的序列中没有重要的信息,LSTM的遗忘门的值会接近于1,输入门的值接近于...0,此时过去的记忆仍会被保留,从而实现了长期记忆功能;但如果输入的序列中出现了重要信息的时候,LSTM就会把它存入记忆中,此时输入门的值会更新为1,而遗忘门的值会接近于0,这样子旧的记忆就会被遗忘,新的信息就会被记忆...因为Sigmoid函数的输出值在0~1之间,符合门控的物理定理,即输入较大or较小的时候其输出会非常接近1or0,从而保证了门的开关。
这种策略基于以下观察:价格趋向于在一段时间内保持相对稳定的方向,即存在趋势;并且在趋势形成时,价格往往会继续朝着同一方向移动,即存在动量。...具体而言,根据给定的价格序列和设定的止损率,标记那些在持有投资期间能够最大化交易者资本的日子为目标日(类别1)。...简单的说,通过模拟了一个交易者,每当从最近的高点开始计算的回撤超过设定的止损率时,关闭持仓。那些能够最大化交易者收益的序列被标记为类别1,其他的则被标记为类别0。...在交易期间,网络再次接收一个30天的输入序列,并通过一个介于0和1之间的数值来表示该股票在当天是否可能处于上涨趋势。数值接近1表示股票可能在当天上涨。...与其他相关研究相比,我们的模型表现相似,而且研究表明,略高于50%的准确率在市场中性环境下可以带来高额的超额收益。
LSTM(Long Short-Term Memory)网络是一种特殊的RNN,它能够解决传统RNN中存在的梯度消失和梯度爆炸问题,从而更好地处理长序列数据。...自然语言处理 在自然语言处理中,LSTM网络模型可以用于文本分类、情感分析、机器翻译等任务。通过对文本序列进行建模,LSTM能够捕捉到文本中的长期依赖关系,从而提高模型的准确率。 2....语音识别 在语音识别中,LSTM网络模型可以用于声学模型和语言模型的建模。通过对语音信号和语言模型进行联合建模,LSTM能够提高语音识别的准确率。 3....图像处理 在图像处理中,LSTM网络模型可以用于图像标注、图像生成等任务。通过对图像序列进行建模,LSTM能够捕捉到图像中的长期依赖关系,从而提高模型的准确率。...总结 LSTM网络模型是一种特殊的RNN,它能够解决传统RNN中存在的梯度消失和梯度爆炸问题,从而更好地处理长序列数据。本文从LSTM的基础结构、训练方法、应用场景等方面进行了详细介绍。
模型建立在训练集上,随后用未见过的测试集评估。在时间序列模型中,我们通常使用一段时期的数据训练,然后用另一段时期的数据进行测试。...使用多点预测测量准确率可能会更好,用这种方法,之前预测的误差不会被重设,而会组合到后续的预测中。因此,性能较差的模型将得到更多的惩罚。用数学公式定义即: ?...我们已经归一化了一些列以令它们的值在第一个时间点等于 0,所以我们的目标是预测该时间点的价格变化。...首先检查训练集性能(2017 年 7 月之前的数据)。代码下面的数字代表 50 次训练迭代后该模型在训练集上的平均绝对误差。我们可以看到模型输出就是每日收盘价。 ? 我们不应对它的准确率感到惊讶。...事实上,它一直都是失败的,只不过在这些波动点更加明显而已。预测价格一般更接近一天后的实际价格(如七月中的下跌)。
长短时记忆网络(LSTM)传统的RNN在处理长序列数据时存在梯度消失和梯度爆炸的问题,长短时记忆网络(LSTM)通过引入门控机制来解决这一问题。...通过这种结构,BiRNN能够更好地处理具有复杂依赖关系的时序数据。公式如下:深度循环神经网络(DRNN):通过堆叠多个RNN层,形成深度结构,DRNN能够捕捉更高层次的特征和时序依赖。...) # 预测 predictions = model(text, text_lengths).squeeze(1) # 计算损失和准确率...准确率计算:binary_accuracy函数计算预测结果的准确率,适用于二分类问题。...模型评估模型会输出每个epoch的训练损失和准确率,以及测试损失和准确率,具体结果可以参考下图注意:en_core_web_sm模型配置下载总结循环神经网络(RNN)及其变种如LSTM、BiRNN和DRNN
这种额外的随机性使模型在学习时具有更大的灵活性,但会使模型不太稳定(例如,在相同的数据上训练相同的模型会产生不同的结果)。这与在不同数据上训练同一模型时给出不同结果的模型方差不同。...在绘制图像的时候注意! 针对训练集验证集的划分,Keras还允许指定一个单独的验证数据集,同时拟合模型,该模型也可以使用相同的损失和度量进行评估。...这可能是训练轮数(epoch)过多导致的。在这种情况下,模型训练可以在拐点处停止。或者,增加训练实例的数量。...一般而言,这种权重初始化效果很好,但是在LSTM中使用普通类型的权重初始化非常成功。评估不同权重初始化方案对模型性能的影响。...例如,LSTM对输入使用sigmoid激活函数,因此输入的比例通常为0-1。序列预测问题的分类或回归性质决定了在输出层中使用的激活函数的类型。
10年前我们对产品的应用,并不是像现在手机上这么多的应用,我们操作更多的是在电脑上,这种情况下,用鼠标和键盘的操作方式就会更加准确,更加方便。...有人提出LSTM单元,LSTM就是长短时间记忆单元,在这种网络结构中,它增加了两个比较明显的特征,来解决前面说的梯度消失和梯度爆炸的概念,增加了一个门,在这个通道上,它的梯队不会消失或者爆炸的,通过门的控制可以控制上一个信息点进来的多少...有人提出LSTM单元,LSTM就是长短时间记忆单元,在这种网络结构中,它增加了两个比较明显的特征,来解决前面说的梯度消失和梯度爆炸的概念,增加了一个门,在这个通道上,它的梯队不会消失或者爆炸的,通过门的控制可以控制上一个信息点进来的多少...至于我们现在的技术难点,如果哪个厂商说准确率97%,那这个就很牛了,关于它的准确率各个厂商都这么说,其实准确率是在安静的情况下还有标准化的情况下才能够达到,如果说有噪音,或者说那个人普通话不标准,或者有口音的普通话...,识别率会降到80%,效果并没有想象那么好。
出现这种现象的原因叫”Vanishing gradian problem”,我们以前说要更新某个链路权重中,需要对它求偏导数,但在某种情况下,我们求得的偏导数可能接近于0,这样一来链路权重就得不到有效更新...,因为当权重加上一个很接近于0的偏导数时,它不会产生显著的变化。...这种现象也会出现在feed forward网络,当网络有很多层时,我们会把误差进行回传,但层次过多时,回传的误差会不断的被“冲淡”,直到某个神经元接收到回传的误差是,该误差的值几乎与0差不多大小,这样求出的偏导数也接近与...这种现象被人工置顶的三位大牛Hochreiter,Schmidhuber,Bengio深入研究后,他们提出一种新型网络层叫LSTM和GRU以便接近偏导数接近于0使得链路权重得不到有效更新的问题。...,上面代码运行后,我们再将它的训练结果绘制出来,结果如下: 上一节我们使用SimpleRNN网络层时,网络对校验数据的判断准确率为85%左右,这里我们使用LSTM网络层,网络对校验数据的准确率可以提升到
为Logistic函数,其值域为(0,1),因此输入门的值就属于(0,1)。LSTM将“tanh”节点的输出(即候选状态 ? )乘上输入门的值后再用来更新内部状态。...输入门就是通过这种方法来决定保存多少中的信息, ? 值的大小就代表了新信息的重要性,不重要的信息就不会被保存到内部状态中. 再来看遗忘门,如图3所示: ?...同样的原理,我们来看“输出门”,如图4所示。输出门的计算公式如下: ? 式4 当 ? 的值月接近于1,则当前时刻的内部状态 ? 就会有更多的信息输出给当前时刻的外部状态 ? 。 ?...和上一时刻网络的状态 ? 之间添加一个线性的依赖关系,来解决梯度消失和梯度爆炸的问题。 ? 图5 单个时间步的GRU网络结构示意图 在GRU网络中,更新门用来控制当前时刻输出的状态 ?...,看是否能达到更高的准确率。
改进方法 为了克服上述缺点,研究者提出了多种改进方法: 长短时记忆网络(LSTM) :LSTM通过引入门控机制,解决了梯度消失和爆炸的问题,提高了模型的稳定性和性能。...长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?...长短期记忆网络(LSTM)和门控循环单元(GRU)都是为了解决循环神经网络(RNN)中的梯度消失和梯度爆炸问题而设计的。然而,它们在结构和性能上存在一些差异。...输出门:决定最终输出的信息量。 这种复杂的结构使得LSTM能够处理更长的序列数据,并且捕捉长期依赖关系。然而,由于其复杂性,LSTM在计算成本和训练难度上也较高。...总结 LSTM和GRU都有效地解决了RNN中的梯度消失和爆炸问题,但它们在结构和性能上各有优劣。
10年前我们对产品的应用,并不是像现在手机上这么多的应用,我们操作更多的是在电脑上,这种情况下,用鼠标和键盘的操作方式就会更加准确,更加方便。...18.png 有人提出LSTM单元,LSTM就是长短时间记忆单元,在这种网络结构中,它增加了两个比较明显的特征,来解决前面说的梯度消失和梯度爆炸的概念,增加了一个门,在这个通道上,它的梯队不会消失或者爆炸的...22.png CLDNN,这种网络结构目前来看是比较成熟和稳定的一种结构,在这上面有训练数据,也能够比较容易的训练出来,前面是几个网络后面再接LSTM,后来再接Dense,有一些高效的企业会提出增加新的网络...25.png 至于我们现在的技术难点,如果哪个厂商说准确率97%,那这个就很牛了,关于它的准确率各个厂商都这么说,其实准确率是在安静的情况下还有标准化的情况下才能够达到,如果说有噪音,或者说那个人普通话不标准...,或者有口音的普通话,识别率会降到80%,效果并没有想象那么好。
/ [译] 理解 LSTM 网络 http://www.jianshu.com/p/9dc9f41f0b29 RNN以及LSTM的介绍和公式梳理 http://blog.csdn.net/Dark_Scope...这样在预处理数据集的时候会简单一些,从索引到单词(0 -> ‘000’)和从单词到索引(‘012’-> 12)其实都是同一个数。...similar_loss:另外一个要优化的想法是,要让预测的结果与正确结果在嵌入矩阵中的特征向量尽量接近,即让两者距离越来越小。...浮动距离中位数范围K准确率:得到预测结果之后,计算正确结果在预测结果中的距离中位数,这个距离实际上是元素在向量中的位置与第一个元素位置的距离。...max:从概率向量中选择最大概率的号码。 ? 结论 先从数据上说,训练的最后打印出的准确率如下: 正常的开奖概率是1‰。 经过25次迭代训练之后准确率是0,一个都没猜中。。。
智能客服系统框架(图据恒生研究院) 对于智能客服机器人而言,语义理解与意图识别决定了对话机器人的回答准确率。随着深度学习在自然语言处理中的运用,训练数据的质量也成为了智能客服开发的关键。...技术新招:语言学运用、LSTM+DSSM算法、多模态情感交互等 针对前述问题,在语义理解方面,目前比较新锐的做法是以传统的NLP技术打底,加上语言学结构,结合新的机器学习、深度学习、以及金融知识图谱的方法...用户问题回答得越多,越精准,尤其对于口语化、表述不够完整的提问,机器能够主动理解。 ? 例如,当用户向支付宝智能客服提问“如何退款?”时,这种没有上下文的问询,也意味着没有场景。...通过LSTM对用户行为轨迹做一个编码,通过深度排序模型,结合用户之前的历史操作,系统能够判断用户的诉求更接近“转账到账户转错了怎么办?”,而不是“为什么银行卡转账被退回来了?”。...“拍照定损对保险业的冲击来说是根本性的,它整个改变了保险业理赔的工作模式。”张家兴说,拍照定损将来还能广泛应用到生鲜电商等多个领域。
然后将损失和学习率画在一张图中,在损失持续下降、即将达到最小值前的范围上取一个值作为学习率。下例中,可以在 10^-2 到 3×10^-2 之间任意取一个值。 ?...只有在 cycle 的最后阶段,学习率接近为 0 时,才真正的出现了过拟合。...这种训练会相对更加危险,因为损失可能会骗你太远,以至于出现严重的偏差;这时,在采用更低的学习率前,可以尝试使用更长的 cycle:更长的预热过程应该会有所帮助。 ?...通过使用这些非常高的学习率,学习完成得更快,同时也防止了过拟合。训练误差和验证误差之间的差距一直保持在很低的水平,直到学习率接近为 0。...Leslie 建议,在真实场景中,可以选取如 0.85 和 0.95 的两个值,在增大学习率的时候,将动量从 0.95 降到 0.85,在降低学习率的时候,再将动量重新从 0.85 提升回 0.95。
去年,IBM已经在语音识别领域走到了一个新的里程碑:系统的错误率降低为6.9%;而AI科技评论了解到,近日IBM Watson的语音识别系统将这个数字降到了5.5%。...清华大学的邓志东教授此前在采访中向AI科技评论表示,只有AI技术达到人类水平,它才有商业化的可能性。技术越来越接近人类水平也一直是人工智能的终极目标。...,当时实现了提高嘈杂环境下的英语识别准确率,实验显示比谷歌、微软及苹果的语音系统的出错率要低10%。...IBM研究院采用深度学习技术进行应用领域的拓展,结合了LSTM及三个WaveNet 音频模型: 前两个模型采用的是六层的双向LSTM模型: 第一个模型有多个特征输入; 第二个模型采用了说话者对抗的多任务学习...人类的表现难以定义,而人类在听懂他人语言的水平也参差不齐。如果我们要将机器识别与人类识别水平进行对比,我认为需要满足以下两个条件:测试者的识别水平,以及在同一演讲中不同人类的表现差异。
ResNet在性能和效率之间取得了很好的平衡;CNN在保持较高准确率的同时,具有较小的模型尺寸和较快的推理速度;LSTM适合处理时间序列数据,但计算成本较高;ShuffleNet则在资源受限的环境中表现出色...LSTM:LSTM的门控机制使其能够学习长期依赖关系,这对于时间序列数据特别重要。然而,这种复杂的结构也导致了更多的参数和更高的计算成本。...通过分组卷积和通道洗牌,ShuffleNet减少了计算量和参数数量,但这种设计可能牺牲了一些模型的表达能力,尤其是在处理复杂数据时。这可能是ShuffleNet在准确率上略低于其他模型的原因之一。...这种设计使得ResNet在训练时对loss的梯度更加敏感,从而在优化过程中能够更快地收敛。...ResNet在性能和效率之间取得了很好的平衡;CNN在保持较高准确率的同时,具有较小的模型尺寸和较快的推理速度;LSTM适合处理时间序列数据,但计算成本较高;ShuffleNet则在资源受限的环境中表现出色
同时,我们发现由于业务场景变得复杂,开发人员和测试人员也疲惫地奔波在各种场景的测试中,捉襟见肘,所以需要一个可以通过表中数据反推迭代的代码逻辑、和相关配置是否正确,在这种背景下,我们建立了核对体系,资损防控系统应运而生...,其中各有利弊,在不同时期解决不同的问题。...,让平台开发者更专注于平台建设; 易用性:降低使用入门成本,将门槛降到最低,而不是望而却步; 高吞吐量:降低Nsq消息RT时间,提高吞吐量; 动态扩容:对于生成的检测点,要分库,降低单库压力,动态扩展分库的分片数...binlog数据,极小范围丢失是在容忍限度之内,当大范围丢失消息,会产生大量报警,是不能容忍的,而往往出现异常的可能就是,当多方binlog消息在同一时间进入同一个核对池子中时,为了避免Hbase中数据覆盖的情况...,第二个是重试时间(时间按升序排列,每次重试的间隔时间会越来越长,直到达到最大重试次数),通俗的讲就是同一个房子,大家不能一起涌入,要排队,一个个进入,进入房子后,会按顺序分床,避免大家在无序状态下可能躺到一张床上
智能客服系统框架(图据恒生研究院) 对于智能客服机器人而言,语义理解与意图识别决定了对话机器人的回答准确率。随着深度学习在自然语言处理中的运用,训练数据的质量也成为了智能客服开发的关键。...技术新招:语言学运用、LSTM+DSSM算法、多模态情感交互等 针对前述问题,在语义理解方面,目前比较新锐的做法是以传统的NLP技术打底,加上语言学结构,结合新的机器学习、深度学习、以及金融知识图谱的方法...用户问题回答得越多,越精准,尤其对于口语化、表述不够完整的提问,机器能够主动理解。 例如,当用户向支付宝智能客服提问“如何退款”时,这种没有上下文的问询,也意味着没有场景。...通过LSTM对用户行为轨迹做一个编码,通过深度排序模型,结合用户之前的历史操作,系统能够判断用户的诉求更接近“转账到账户转错了怎么办”,而不是“为什么银行卡转账被退回来了”。...“拍照定损对保险业的冲击来说是根本性的,它整个改变了保险业理赔的工作模式。”张家兴说,拍照定损将来还能广泛应用到生鲜电商等多个领域。
领取专属 10元无门槛券
手把手带您无忧上云