也可以用来展示《葡萄酒杂志》(Wine Magazine)给出的评分数量的分布情况: 如果要绘制的数据不是类别值,而是连续值比较适合使用折线图 : 柱状图和折线图区别 柱状图:简单直观,很容易根据柱子的长短看出值的大小... 直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...散点图最适合使用相对较小的数据集以及具有大量唯一值的变量。 有几种方法可以处理过度绘图。...一:对数据进行采样 二:hexplot(蜂巢图) hexplot hexplot将数据点聚合为六边形,然后根据其内的值为这些六边形上色: 上图x轴坐标缺失,属于bug,可以通过调用matplotlib的...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒 从结果中看出,最受欢迎的葡萄酒是
%matplotlib 内联魔法命令也被添加到代码中,以确保绘制的数字正确显示在笔记本单元格中: import pandas as pd import numpy as np import matplotlib.pyplot...条形图 条形图是一种基本的可视化图表,用于比较数据组之间的值并用矩形条表示分类数据。该图表可能包括特定类别的计数或任何定义的值,并且条形的长度对应于它们所代表的值。...在下面的示例中,我们将根据每月平均股价创建一个条形图,来比较每个公司在特定月份与其他公司的平均股价。首先,我们需要按月末重新采样数据,然后使用 mean() 方法计算每个月的平均股价。...字符串值分配给 kind 参数来创建水平条形图: df_3Months.plot(kind='barh', figsize=(9,6)) Output: 我们还可以在堆叠的垂直或水平条形图上绘制数据...: 箱形图 箱线图由三个四分位数和两个虚线组成,它们在一组指标中总结数据:最小值、第一四分位数、中位数、第三四分位数和最大值。
在本文中,我们介绍了最基本的 5 种数据可视化图表,在展示了它们的优劣点后,我们还提供了绘制对应图表的 Matplotlib 代码。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?
数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...当然,在使用新的引擎前需要先安装对应的库。...) 柱状图多子图 # 柱状图多子图 df.plot.bar(subplots=True, rot=0) 条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 默认是堆叠 df.plot.area() 单个面积图 df.a.plot.area() 取消堆叠 # 取消堆叠 df.plot.area(stacked=False) 散点图 散点图就是将数据点展示在直角坐标系上
数据源选择 这里是指坐标轴的x、y轴数据,对于Series类型数据来说其索引就是x轴,y轴则是具体的值;对于Dataframe类型数据来说,其索引同样是x轴的值,y轴默认为全部,不过可以进行指定选择。...除了在绘图时定义图像大小外,我们还可以通过matplotlib的全局参数设置图像大小 plt.rcParams['figure.figsize'] = (10,5) 标题 通过参数title设置图表标题...绘图引擎 通过backend可以指定不同的绘图引擎,目前默认是matplotlib,还支持bokeh、plotly、Altair等等。当然,在使用新的引擎前需要先安装对应的库。...条形图 条形图和柱状图其实差不多,条形图就是柱状图的横向展示 # 条形图barh df.plot.barh(figsize=(6,8)) ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。
在本文中,我们介绍了最基本的 5 种数据可视化图表,在展示了它们的优劣点后,我们还提供了绘制对应图表的 Matplotlib 代码。...当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。
这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...堆叠条形图用于显示数据集子组。...这是堆叠条形图的类型,其中每个堆叠条形显示其离散值占总值的百分比。...它们在水平轴上的位置决定了一个变量的值。垂直轴上的位置决定了另一个变量的值。当一个变量可以控制而另一个变量依赖于它时,可以使用散点图。当两个连续变量独立时也可以使用它。...较低/较高的相邻值(黑色条形图)--分别定义为第一四分位数-1.5 IQR和第三四分位数+1.5 IQR。这些值可用于简单的离群值检测技术,即位于这些 "栅栏"之外的值可被视为离群值。
条形图 2.1 单行垂直/水平条形图 2.2 多行条形图 3. 直方图 3.1 生成数据 3.2 透明度/刻度/堆叠直方图 3.3 拆分子图 4....折线图 1.1 导入数据 import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib...条形图 2.1 单行垂直/水平条形图 单行垂直/水平条形图 生成数据: # 生成数据 df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "...iloc[2].plot(kind = 'bar', figsize=(10, 6)) plt.show() 输出为: 2.2 多行条形图 多行堆叠 # 多行,堆叠对应着着stacked=True...+ ["versicolor"] * 20 + ["virginica"] * 10 ) df4 输出为: 4.2 绘制大小不一的散点图 # s=df4["c"] * 200 让散点的大小随着值变化
我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。...其代码遵循与分组条形图相同的样式。我们循环遍历每一组,但是这次我们在旧的条形图上绘图,而不是在它们旁边画新条形图。 ? 常规条形图 ? 分组条形图 ?...堆叠条形图 def barplot(x_data, y_data, error_data, x_label="", y_label="", title=""): _, ax = plt.subplots...Matplotlib函数' boxplot() '为' ydata '的每一列或序列' ydata '中的每个向量绘制一个箱线图,因此,“xdata”中的每个值对应于“y_data”中的列/向量。
Matplotlib是基于Python语言的开源项目,旨在为Python提供一个数据绘图包。用户在熟悉了核心对象之后,就可以轻易的定制图像。...2.Matplotlib快速预览 在matplotlib中,整个图像为一个Figure对象,在Figure对象中可以包含一个或者多个Axes对象。...柱状图.png 4.3 绘制条形图plt.barh plt.barh为我们创建条形图。本质上条形图就是横向的柱形图,故两个的配置几乎完全相同。...优势:处理值的分布和数据点的分簇区域。如果数据集中包含非常多的点,那么散点图便是最佳图表类型。...散点图.png 4.7绘制堆叠图plt.stackplot 堆叠图常用于“部分相对整体”随时间的关系。堆叠图基本上类似于饼图,只是随时间而变化。
初开发的Matplotlib,仅支持绘制2d图形,后来随着版本的不断更新,Matplotlib在二维绘图的基础上,构建了一部分较为实用的3D绘图程序包,通过调用该程序包一些接口可以绘制3D散点图、3D曲面图...Seaborn是Matplotlib的重要补充,可以自主设置在Matplotlib中被默认的各种参数,而且它能高度兼容NumPy与Pandas数据结构以及Scipy与statsmodels等统计模式。...#画第二个条形图 rects2 = plt.bar( # index, # 与第一个条形图在X周上无缝“肩并肩” index +bar_width...', label = '张三') #定义第一个条形图的标签信息 #画第二个条形图 rects2 = plt.bar(index, # 与第一个条形图在X周上无缝“...柱子的宽度占bins宽的比例; log:布尔值。
在QBarSet类中,定义所需的属性和方法。3. 属性可能包括条形的名称、颜色、值等。4. 方法可能包括添加条形、删除条形、计算总和等。5....确保QStackedBarSeries类能够与其他图表元素协同工作,以便在图表中显示堆叠条形图。03、QBarCategoryAxis1. 首先,需要创建一个名为QBarCategoryAxis的类。...在QValueAxis类中,定义所需的属性和方法。3. 属性可能包括轴的名称、颜色、最小值、最大值等。4. 方法可能包括设置最小值、设置最大值、计算刻度间隔等。5....05、简单的堆叠条形图示例 main.cpp#include #include #include 堆叠百分比条形图。
Pandas中的绘图是在matplotlib之上构建的,如果你很熟悉matplotlib你会惊奇地发现他们的绘图风格是一样的。 本案例用到的数据集是关于钻石的。...import numpy as np import pandas as pd import matplotlib %matplotlib inline diamonds = pd.read_csv("...柱状图 柱状图是一个单变量图(注意区分柱状图和条形图),它将一个数值变量分组到各个数值单元中,并显示每个单元中的观察值数量。直方图是了解数值变量分布的一种有用工具。...将X轴限制在3.5可能会剔除一些异常值,以至于它们在原始图表中没有显示。接下来看看有没有钻石大于3.5克拉: diamonds[diamonds["carat"] > 3.5] ?...分组条形图是堆叠条形图的另一种选择,设置stacked=False即可: carat_table.plot(kind="bar", figsize=(8,8),
y: 柱状图中的柱体高度 align: 柱体对齐方式 color: 柱体颜色 tick_label: 刻度标签值 alpha: 柱体的透明度 2.条形图 如果将柱状图中的柱体由垂直方向变成水平方向,柱状图就变成条形图...因此,堆积图顾名思义就是将若干统计图形堆叠起来的统计图形,自然是一种组合式图形。...堆积折线图是按照垂直方向上彼此堆叠且又不相互覆盖的排列顺序,绘制若干折线图而形成的组合图形。...在箱须的末端之外的数值可以理解成离群值,因此,箱须是对一组数据范围的大致直观描述。...上箱须和下箱须长度的确定方法是在绘制箱线图的原始数据集data中分别寻找不大于Q3+whisxIQR的最大值valuemax和不小于Q1-whisxIQR的最小值valuemin,其中Q1和Q3分别是第一四分位数和第三四分位数
通过 Matplotlib,我们可以仅需要写几行代码,就可以生成绘图,直方图,功率谱,条形图,错误图,散点图等,方便数据展示。...fc:全写为facecolor,长条形的颜色 ec:全写为edgecolor,长条形边框的颜色 条形图 在之前的小节中得到了高分电影上映年份的TOP,现在我们就将此数据做成可视化的条形图。...) #获得纵(y)坐标数据 y = series.values.tolist() ax = plt.bar(x, y, width=0.4) # 添加横坐标显示 plt.xticks(x, x) # 在每个条形图上方显示数值...: 横坐标(序列) height:纵坐标(系列) width:条形图的宽度,默认是0.8,可以根据实际大小设置,以更加美观 bottom:用于绘制堆叠条形图,默认值为None align:x轴刻度标签的对齐方式...:设置饼图的方向,默认为True,表示逆时针方向,值为False时为顺时针方向 colors:颜色设置,默认值为None, 会使用默认的调色盘,所以通常情况下,不需要设置该参数。
簇状柱形图 通过给bottom参数传一个数组,可以画堆叠柱状图:堆叠柱除了等值堆叠之外,还可以等比堆叠,思路就是将每个x对应的柱都做一下数值变换,把柱的高度约束在[0,1],且堆叠之和为1,height...堆叠柱状图绘制 调节width参数使得柱和柱之间的宽度为0,并对数据进行统计在画图,可以用ax.bar()绘制直方图,但也不需要这么复杂,Matplotlib提供了绘制直方图的接口ax.hist(x,bins...用同一列数据绘制的直方图与箱线图 饼图是可视化中基础而重要的图形,是各种数据报告的常客,Matplotlib绘制饼图时因为xy轴默认比例尺不同,为了得到不扁的饼,需设置xy轴1像素对应的值相等。...在shell环境中一般通过plt.show()展示图片,而jupyter notebook中通常写%matplotlib inline将图片直接在Out[]里输出展示。 ?...而为了在Matplotlib中支持中文,各教程的解决方案基本都有mpl.rcParams['font.family']='SimHei'这句,就是将Matplotlib的字体替换为微软雅黑。
2000-01-09 -0.842049 -0.290053 0.043574 -0.992036 2000-01-10 0.242678 0.289572 0.858469 -0.756504 matplotlib.axes...二、条形图 利用plot.bar() # 条形图 df.plot.bar() ?...堆叠的条形图: 设置stacked=True就OK啦 # 堆叠条形图 df.plot.bar(stacked=True) ?...水平条形图: # 水平条形图 df = pd.DataFrame(np.random.rand(10, 4), columns=['a','b','c','d']) df.plot.barh(stacked
微信公众号:yale记 关注可了解更多的教程。...问题或建议,请公众号留言; 背景介绍 今天我们学习使用Matplotlib创建条形图表,非常适合展示每个类别对应的总值方式显示数据,将学习从csv文件中加载数据,并将数据进行条形图表的方式展示,csv...接下来我们编码实现图表展示: import pandas as pd from collections import Counter from matplotlib import pyplot as...plt from matplotlib import font_manager #设置图表样式 plt.style.use('fivethirtyeight') #这里使用pandas读取csv文件...设置图表的字体微软雅黑 防止中文乱码的 zh_font = font_manager.FontProperties(fname='C:\\Windows\\Fonts\\msyh.ttf') #使用横向条形图表
模块,在maplotlib中添加任意路径: 源代码 mplot3d mplot3d 工具包(见 mplot3d 教程和 mplot3d 示例)支持简单的三维图形,包括平台、线框图、散点图和条形图。...椭圆 为了支持 Phoenix Mars Mission(使用 matplotlib 展示地面跟踪的航天器),Michael Droettboom 在 Charlie Moad 的工作基础上提供了非常精确的椭圆弧的...源代码 条形图 使用bar()命令创建条形图十分容易,其中包括一些定制(如误差条): 源代码 创建堆叠条(bar_stacked.py),蜡烛条(finance_demo.py)和水平条形图(barh_demo.py...源代码 详细信息和用法请参阅matplotlib.ticker和matplotlib.dates。...以下示例模拟 ChartDirector 中的一个财务图: 源代码 地图示例 Jeff Whitaker 的 Basemap 附加工具包可以在许多不同的地图投影上绘制数据。
以显示与目标和性能带相比的实际情况 我们先来看下子弹图大概长什么样子 子弹图具有单一的主要度量(例如,当前年初至今的收入),将该度量与一个或多个其他度量进行比较以丰富其含义(例如,与目标相比),并将其显示在性能的定性范围的背景...定性范围显示为单一色调的不同强度,使色盲者可以辨别它们,并将仪表板上的颜色使用限制在最低限度 好了,差不多这就是子弹图的应用场景和绘制标准了,下面我们就开始制作吧 2构建图表 思路大致是,可以使用堆叠条形图来表示各种范围...,并使用另一个较小的条形图来表示值,最后,用一条垂直线标记目标 可以看出,我们需要多个组件图层,使用 matplotlib 来实现会比较方便 import matplotlib.pyplot as plt...import seaborn as sns from matplotlib.ticker import FuncFormatter %matplotlib inline 这里我们还导入了 Seaborn...根据上面列出的原则创建一个简单的子弹图 首先,定义我们想要绘制的值 limits = [80, 100, 150] data_to_plot = ("Example 1", 105, 120) 这个将创建
领取专属 10元无门槛券
手把手带您无忧上云