首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...后来【瑜亮老师】也给了一个代码,如下:df.loc[[df.点击.idxmax()]],也算是一种方法。 顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40110

在Power Pivot中如何查找对应的值求得费用?

在Excel中我们可以直接使用Vlookup或者Index和Match组合匹配到,然后下拉即可 VlookUp(A2,E1:F4,2,0)*RoundUp(B2,0) Index(F:F,Match(A2...但是这个条件会显得不一样,因为报价时间和发货时间是不等的,因为一般报价都是在发货前,所以在筛选的时候条件是报价时间在筛选的时候会出现多个内容的表。 ?...[单位价格kg]中最大的一个值,而不是最后的一个值。...有了这个最后的时间,按我们就可以按照之前的思路继续进行了,在添加列里面的公示如下。...这里我们需要查找的是2个值,一个是首重,一个是续重(单位价格),然后再去求运费。我们通过var变量来写,相对能够更清楚些。最终我们可以在添加列里面写上如下公式。

4.3K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    问与答112:如何查找一列中的内容是否在另一列中并将找到的字符添加颜色?

    引言:本文整理自vbaexpress.com论坛,有兴趣的朋友可以研阅。...Q:我在列D的单元格中存放着一些数据,每个单元格中的多个数据使用换行分开,列E是对列D中数据的相应描述,我需要在列E的单元格中查找是否存在列D中的数据,并将找到的数据标上颜色,如下图1所示。 ?...A:实现上图1中所示效果的VBA代码如下: Sub ColorText() Dim ws As Worksheet Dim rDiseases As Range Dim rCell...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格中的数据并存放到数组中...,然后遍历该数组,在列E对应的单元格中使用InStr函数来查找是否出现了该数组中的值,如果出现则对该值添加颜色。

    7.2K30

    Excel公式技巧93:查找某行中第一个非零值所在的列标题

    有时候,一行数据中前面的数据值都是0,从某列开始就是大于0的数值,我们需要知道首先出现大于0的数值所在的单元格。...例如下图1所示,每行数据中非零值出现的位置不同,我们想知道非零值出现的单元格对应的列标题,即第3行中的数据值。 ?...图1 可以在单元格N4中输入下面的数组公式: =INDIRECT(ADDRESS(3,MATCH(TRUE,B4:M40,0)+1)) 然后向下拖拉复制至单元格N6,结果如下图2所示。 ?...图2 在公式中, MATCH(TRUE,B4:M40,0) 通过B4:M4与0值比较,得到一个TRUE/FALSE值的数组,其中第一个出现的TRUE值就是对应的非零值,MATCH函数返回其相对应的位置...MATCH函数的查找结果再加上1,是因为我们查找的单元格区域不是从列A开始,而是从列B开始的。

    9.8K30

    arcengine+c# 修改存储在文件地理数据库中的ITable类型的表格中的某一列数据,逐行修改。更新属性表、修改属性表某列的值。

    作为一只菜鸟,研究了一个上午+一个下午,才把属性表的更新修改搞了出来,记录一下: 我的需求是: 已经在文件地理数据库中存放了一个ITable类型的表(不是要素类FeatureClass),注意不是要素类...FeatureClass的属性表,而是单独的一个ITable类型的表格,现在要读取其中的某一列,并统一修改这一列的值。...表在ArcCatalog中打开目录如下图所示: ? ?...string strValue = row.get_Value(fieldindex).ToString();//获取每一行当前要修改的属性值 string newValue...= "X";//新值,可以根据需求更改,比如字符串部分拼接等。

    9.6K30

    C++ 在无序字符串中查找所有重复的字符【两种方法】

    参考链接: C++程序,找出一个字符的ASCII值 C++ 在无序字符串中查找所有重复的字符   Example:给定字符串“ABCDBGAC”,打印“A B C”  #include <iostream...    string s = a;     for (int i = 0; i < s.size() - 1; i++)     {         if (s[i] == '#') //判断i指针的指向是否为输出过的字符...            continue;         int m = 1; //判断j指针的指向是否为输出过的字符         for (int j = i + 1; j <= s.size...                if (m == 1)                     cout << s[i] << " ";                 s[j] = '#'; //对输出过的字符做标记...                m = 0;      //对输出过的字符做标记             }         }     } } void PrintIterateChar2(const

    3.9K30

    面试算法:在循环排序数组中快速查找第k小的值d

    解答这道题的关键是要找到数组中的最小值,由于最小值不一定在开头,如果它在数组中间的话,那么它一定具备这样的性质,假设第i个元素是最小值,那么有A[i-1]>A[i]两个指针begin 和 end分别指向数组的开头和结尾,然后去中点 m = (begin + end) / 2。...如果A[m] > A[n-1],那么我们可以确定最小值在m的右边,于是在m 和 end之间做折半查找。...如果A[m] 值,如果不是,那么最小值在m的左边,于是我们在begin 和 m 之间折半查找,如此我们可以快速定位最小值点。...这种查找方法使得我们能够在lg(n)时间内查找到最小值。 当找到最小值后,我们就很容易查找第k小的元素,如果k比最小值之后的元素个数小的,那么我们可以在从最小值开始的数组部分查找第k小的元素。

    3.2K10

    Excel公式技巧17: 使用VLOOKUP函数在多个工作表中查找相匹配的值(2)

    我们给出了基于在多个工作表给定列中匹配单个条件来返回值的解决方案。本文使用与之相同的示例,但是将匹配多个条件,并提供两个解决方案:一个是使用辅助列,另一个不使用辅助列。 下面是3个示例工作表: ?...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”且“Year”列为“2012”对应的Amount列中的值,如下图4所示的第7行和第11行。 ?...图4:主工作表Master 解决方案1:使用辅助列 可以适当修改上篇文章中给出的公式,使其可以处理这里的情形。首先在每个工作表数据区域的左侧插入一个辅助列,该列中的数据为连接要查找的两个列中数据。...16:使用VLOOKUP函数在多个工作表中查找相匹配的值(1)》。...解决方案2:不使用辅助列 首先定义两个名称。注意,在定义名称时,将活动单元格放置在工作表Master的第11行。

    14.1K10

    Excel公式技巧16: 使用VLOOKUP函数在多个工作表中查找相匹配的值(1)

    在某个工作表单元格区域中查找值时,我们通常都会使用VLOOKUP函数。但是,如果在多个工作表中查找值并返回第一个相匹配的值时,可以使用VLOOKUP函数吗?本文将讲解这个技术。...最简单的解决方案是在每个相关的工作表中使用辅助列,即首先将相关的单元格值连接并放置在辅助列中。然而,有时候我们可能不能在工作表中使用辅助列,特别是要求在被查找的表左侧插入列时。...图3:工作表Sheet3 示例要求从这3个工作表中从左至右查找,返回Colour列中为“Red”对应的Amount列中的值,如下图4所示。 ?...B:B"}),$A3) INDIRECT函数指令Excel将这个文本字符串数组中的元素转换为单元格引用,然后传递给COUNTIF函数,同时单元格A3中的值作为其条件参数,这样上述公式转换成: {0,1,3...} 分别代表工作表Sheet1、Sheet2、Sheet3的列B中“Red”的数量。

    25.5K21

    Excel实战技巧55: 在包含重复值的列表中查找指定数据最后出现的数据

    文章详情:excelperfect 本文的题目比较拗口,用一个示例来说明,如下图1所示,是一个记录员工值班日期的表,在安排每天的值班时,需要查看员工最近一次值班的日期,以免值班时间隔得太近。...A2:A10中的值,如果相同返回TRUE,不相同则返回FALSE,得到一个由TRUE和FALSE组成的数组,然后与A2:A10所在的行号组成的数组相乘,得到一个由行号和0组成的数组,MAX函数获取这个数组的最大值...,也就是与单元格D2中的值相同的数据在A2:A10中的最后一个位置,减去1是因为查找的是B2:B10中的值,是从第2行开始的,得到要查找的值在B2:B10中的位置,然后INDEX函数获取相应的值。...图2 使用LOOKUP函数 公式如下: =LOOKUP(2,1/($A$2:$A$10=$D$2),$B$2:$B$10) 公式中,比较A2:A10与D2中的值,相等返回TRUE,不相等返回FALSE...组成的数组,由于这个数组中找不到2,LOOKUP函数在数组中一直查找,直至最后一个比2小的最大值,也就是数组中的最后一个1,返回B2:B10中对应的值,也就是要查找的数据在列表中最后的值。

    10.9K20

    面试算法,在绝对值排序数组中快速查找满足条件的元素配对

    对于这个题目,我们曾经讨论过当数组元素全是整数时的情况,要找到满足条件的配对(i,j),我们让i从0开始,然后计算m = k - A[i],接着在(i+1, n)这部分元素中,使用折半查找,看看有没有元素正好等于...m,如果在(i+1,n)中存在下标j,满足A[j] == m 那么我们就可以直接返回配对(i,j),这种做法在数组元素全是正数,全是负数,以及是绝对值排序时都成立,只是在绝对值排序的数组中,进行二分查找时...因此在查找满足条件的元素配对时,我们先看看前两种情况是否能查找到满足条件的元素,如果不行,那么我们再依据第三种情况去查找,无论是否存在满足条件的元素配对,我们算法的时间复杂度都是O(n)。..." and " + this.sortedArray[this.indexJ]); } } } 类FindPairInAbsoluteSortedArray用于在绝对值排序的数组中查找满足条件的元素配对...,它先根据两元素都是正数的情况下查找,然后再根据两元素都是负数的情况下查找,如果这两种情况都找不到,再尝试两元素一正一负的情况下查找,如果三种情况都找不到满足条件的元素,那么这样的元素在数组中不存在。

    4.3K10

    论文研读-SIMD系列-基于分区的SIMD处理及在列存数据库系统中的应用

    基于分区的SIMD处理及在列存数据库系统中的应用 单指令多数据(SIMD)范式称为列存数据库系统中优化查询处理的核心原则。...我们概述了一种新的访问模式,该模式允许细粒度、基于分区的SIMD实现。然后,我们将这种基于分区的处理应用到列存数据库系统中,通过2个代表性示例,证明我们新的访问模式的效率及适用性。...3、基于分区的SIMD 上述实验说明,在单线程和多线程环境中,SIMD寄存器可以实验GATHER操作访问非连续内存中的元素,可达到LOAD指令访问连续内存的性能。...也就是说g定义了两个被访问的页面之间的间隙,每个块内页面使用步幅为g的跨步访问模式。 这种访问模式支持一种细粒度、页面分区的SIMD处理概念。...因此,我们基于分区的SIMD处理概念旨在显式地缓存当前和未来处理多个页面所需的数据,与线性访问相比,可以提高该处理模型的性能。 对满足列B上的谓词条件的记录,在列A上进行聚合sum操作。

    50740

    PySpark SQL——SQL和pd.DataFrame的结合体

    中的drop_duplicates函数功能完全一致 fillna:空值填充 与pandas中fillna功能一致,根据特定规则对空值进行填充,也可接收字典参数对各列指定不同填充 fill:广义填充 drop...:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名(若当前已有则执行修改,否则创建新列...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('...,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的DataFrame,而且是筛选多少列就返回多少列,适用于同时创建多列的情况(官方文档建议出于性能考虑和防止内存溢出,在创建多列时首选...,timestamp转换为时间戳、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可。

    10K20

    数据导入与预处理-课程总结-04~06章

    ' # 这里我们事先指定了数据库,后续操作只需要表即可 } #这里直接使用pymysql连接,echo=True,会显示在加载数据库所执行的SQL语句。...缺失值的常见处理方式有三种:删除缺失值、填充缺失值和插补缺失值,pandas中为每种处理方式均提供了相应的方法。...对象中的重复值 df.duplicated() # 返回boolean数组 # 查找重复值 # 将全部重复值所在的行筛选出来 df[df.duplicated()] # 查找重复值|指定 # 上面是所有列完全重复的情况...,但有时我们只需要根据某列查找重复值 df[df.duplicated(['gender'])] # 删除全部的重复值 df.drop_duplicates() # 删除重复值|指定 # 删除全部的重复值...常用的合并数据的函数包括: 3.2.3 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。

    13.1K10

    Pandas速查卡-Python数据科学

    df.groupby(col) 从一列返回一组对象的值 df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值...,按col1分组并计算col2和col3的平均值 df.groupby(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数...data.apply(np.max,axis=1) 在每行上应用一个函数 加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1,...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max...() 查找每个列中的最大值 df.min() 查找每列中的最小值 df.median() 查找每列的中值 df.std() 查找每个列的标准差 点击“阅读原文”下载此速查卡的打印版本 END.

    9.2K80

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    SQL和Python几乎是当前数据分析师必须要了解的两门语言,它们在处理数据时有什么区别?...在pandas中也有类似的操作 ? 查找空值 在pandas检查空值是使用notna()和isna()方法完成的。...在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!...'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行,在SQL中实现内连接使用INNER JOIN SELECT * FROM...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1

    3.6K31

    Pandas图鉴(三):DataFrames

    Pandas 给 NumPy 数组带来的两个关键特性是: 异质类型 —— 每一列都允许有自己的类型 索引 —— 提高指定列的查询速度 事实证明,这些功能足以使Pandas成为Excel和数据库的强大竞争者...还有两个创建DataFrame的选项(不太有用): 从一个dict的列表中(每个dict代表一个行,它的键是列名,它的值是相应的单元格值)。...最后一种情况,该值将只在切片的副本上设置,而不会反映在原始df中(将相应地显示一个警告)。 根据情况的背景,有不同的解决方案: 你想改变原始数据框架df。...为了使其发挥作用,这两个DataFrame需要有(大致)相同的列。这与NumPy中的vstack类似,你如下图所示: 在索引中出现重复的值是不好的,会遇到各种各样的问题。...从这个简化的案例中你可以看到(见上面的 "full outer join 全外链"),与关系型数据库相比,Pandas在保持行的顺序方面是相当灵活的。

    44420

    pandas多级索引的骚操作!

    我们知道dataframe是一个二维的数据表结构,通常情况下行和列索引都只有一个。但当需要多维度分析时,我们就需要添加多层级索引了。在关系型数据库中也被叫做复合主键。...一种是只有纯数据,索引需要新建立;另一种是索引可从数据中获取。 因为两种情况建立多级索引的方法不同,下面分情况来介绍。 01 新建多级索引 当只有数据没有索引时,我们需要指定索引值,比如下图。...,pro], names=['年份','专业']) # 对df的行索引、列索引赋值 df.index = mindex df.columns = mcol display(df) 02 从数据中获取多级索引...# 按层级获取索引 df.index.get_level_values(level=1) # 查找行的二级索引 df.index.get_level_values(level=0) # 查找行的一级索引...df.columns.get_level_values(level=1) # 查找列的二级索引 df.columns.get_level_values(level=0) # 查找列的一级索引 02

    1.5K31

    MongoDB和pandas的数据分析入门极简教程

    包含由字段和值对组成的数据结构的文档在MongoDB中称为记录(record)。这些记录类似于JSON对象。字段的值可以包括其他文档、数组和文档数组。...要选择列,请使用: fixed_df['Column Header'] 要绘制列,请使用: fixed_df['Column Header'].plot() 要获取数据集中的最大值,请使用以下命令...: MaxValue=df['Births'].max() where Births is the column header 假设数据集中有另一列名为Name,Name的命令与最大值相关联。...MaxName=df['Names'][df['Births']==df['Births'].max()].values 在Pandas中还有许多其他方法,例如 sort、groupby 和 orderby...在不同列值的X数据框中,查找root列分组的平均值。 for col in X.columns: if col !

    1.8K10
    领券