首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

seaborn可视化数据框中的多个列元素

seaborn提供了一个快速展示数据库中列元素分布和相互关系的函数,即pairplot函数,该函数会自动选取数据框中值为数字的列元素,通过方阵的形式展现其分布和关系,其中对角线用于展示各个列元素的分布情况...函数自动选了数据框中的3列元素进行可视化,对角线上,以直方图的形式展示每列元素的分布,而关于对角线堆成的上,下半角则用于可视化两列之间的关系,默认的可视化形式是散点图,该函数常用的参数有以下几个 ###...#### 3、 x_vars和y_vars 默认情况下,程序会对数据框中所有的数值列进行可视化,通过x_vars和y_vars可以用列名称来指定我们需要可视化的列,用法如下 >>> sns.pairplot...#### 4. hue hue参数用于分组变量的颜色映射,用法如下 >>> sns.pairplot(df, hue='species') >>> plt.show() 输出结果如下 ?...通过pairpplot函数,可以同时展示数据框中的多个数值型列元素的关系,在快速探究一组数据的分布时,非常的好用。

5.2K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】基于某些列删除数据框中的重复值

    导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...从结果知,参数keep=False,是把原数据copy一份,在copy数据框中删除全部重复数据,并返回新数据框,不影响原始数据框name。...原始数据中只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多列数去重,可以在subset中添加列。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-

    20.5K31

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...打印原始数据行数: print(df.shape) 得到结果: (130, 3) 由于每两行中有一行是重复的,希望数据处理后得到一个65行3列的去重数据框。...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

    14.7K30

    在Pandas中更改列的数据类型【方法总结】

    先看一个非常简单的例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 有什么方法可以将列转换为适当的类型...例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...解决方法 可以用的方法简单列举如下: 对于创建DataFrame的情形 如果要创建一个DataFrame,可以直接通过dtype参数指定类型: df = pd.DataFrame(a, dtype='float...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1

    20.3K30

    Excel实战技巧74: 在工作表中创建搜索框来查找数据

    本文主要讲解如何创建一个外观漂亮的搜索框,通过它可以筛选数据并显示搜索结果。...如下图1所示,在数据区域上方放置有一个文本框,用来输入要搜索的文本,其名称重命名为“MySearch”;一个用作按钮的矩形形状,点击它开始搜索并显示结果;两个选项按钮窗体控件,用来选择在数据区域的哪列进行搜索...End Sub 在代码中,对要搜索的文本使用了通配符,因此可以搜索部分匹配的文本。此外,对数据区域使用了“硬编码”,你可以将其修改为实际的数据区域。代码运行的结果如下图2所示。 ?...图5 可以在此基础上进一步添加功能,例如,在搜索完成后,我想恢复原先的数据,可以在工作表中再添加一个代表按钮的矩形形状,如下图6所示。 ?...但细心的朋友可能发现,由于我们使用的是文本框和形状,因此会出现Excel的编辑形状线,特别是输入文本后,单击形状前,都需要在其他单元格中单击一下,才能再单击形状。这可能会带来不便!

    16.7K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。... Pandas 库创建一个空数据帧以及如何向其追加行和列。

    28030

    Day5生信入门——数据结构(!选修!直接使用数据框中的变量!没学!!)

    显示工作路径 getwd() 向量是由元素组成的,元素可以是数字或者字符串。 表格在R语言中叫数据框 要理解其中的命令、函数的意思!...标量和向量的区分: 元素指的是数字或者字符串(用chr表示)等,根据它可以区分两个词: 1)标量:一个元素组成的变量 2)向量:多个元素组成的变量 图片赋值就是赋予这个变量一个数值(其实也不一定是数值,...用以下命令即可获得示例数据框:X<-read.csv('doudou.txt') 图片 2)设置行名和列名 X在示例数据里有doudou.txt 注意这里的变量...X是一个数据框 colnames(X) #查看列名 rownames(X) #查看行名,默认值的行名就是行号,1.2.3.4... colnames(X)[1]数据...b列 X$列名#也可以提取列(优秀写法,而且这个命令还优秀到不用写括号的地步,并且支持Tab自动补全哦,不过只能提取一列)6)直接使用数据框中的变量!!!!!!

    18700

    创建一个欢迎 cookie 利用用户在提示框中输入的数据创建一个 JavaScript Cookie,当该用户再次访问该页面时,根据 cookie 中的信息发出欢迎信息。…

    创建一个欢迎 cookie 利用用户在提示框中输入的数据创建一个 JavaScript Cookie,当该用户再次访问该页面时,根据 cookie 中的信息发出欢迎信息。...cookie 是存储于访问者的计算机中的变量。每当同一台计算机通过浏览器请求某个页面时,就会发送这个 cookie。你可以使用 JavaScript 来创建和取回 cookie 的值。...的欢迎词。而名字则是从 cookie 中取回的。 密码 cookie 当访问者首次访问页面时,他或她也许会填写他/她们的密码。密码也可被存储于 cookie 中。...当他们再次访问网站时,密码就会从 cookie 中取回。 日期 cookie 当访问者首次访问你的网站时,当前的日期可存储于 cookie 中。...日期也是从 cookie 中取回的。

    2.7K10

    Python3分析CSV数据

    for循环,在一个输入文件集合中迭代,并使用glob模块和os模块中的函数创建输入文件列表以供处理。...基本过程就是将每个输入文件读取到pandas数据框中,将所有数据框追加到一个数据框列表,然后使用concat 函数将所有数据框连接成一个数据框。...如果你需要平行连接数据,那么就在concat 函数中设置axis=1。除了数据框,pandas 中还有一个数据容器,称为序列。你可以使用同样的语法去连接序列,只是要将连接的对象由数据框改为序列。...,然后使用数据框函数将此对象转换为DataFrame,以便可以使用这两个函数计算列的总计和均值。...因为输出文件中的每行应该包含输入文件名,以及文件中销售额的总计和均值,所以可以将这3 种数据组合成一个文本框,使用concat 函数将这些数据框连接成为一个数据框,然后将这个数据框写入输出文件。

    6.7K10

    左手用R右手Python系列10——统计描述与列联分析

    数据统计描述与列联表分析是数据分析人员需要掌握的基础核心技能,R语言与Python作为优秀的数据分析工具,在数值型数据的描述,类别型变量的交叉分析方面,提供了诸多备选方法。...这里根据我们平时对于数据结构的分类习惯,按照数值型和类别型变量分别给大家盘点一下R与Python中那些简单使用的分析函数。...() #份数表示的列联表 margin.table() #添加边际和 addmargins() #将边际和放入表中 ftable() #创建紧凑型列联表 一维列联表: mytable...Python: 关于Python中的变量与数据描述函数,因为之前已经介绍过一些基础的聚合函数,这里仅就我使用最多的数据透视表和交叉表进行讲解:Pandas中的数据透视表【pivot_table】和交叉表...以上透视表是针对数值型变量的分组聚合,那么针对类别型变量则需要使用pandas中的交叉表函数进行列表分析。

    3.5K120

    带你和Python与R一起玩转数据科学: 探索性数据分析(附代码)

    R 在R语言中基本的描述性统计方法,如我们说过的,是summary()。 ? 这个方法返回一个表格对象,使我们拥有了一个包含各列统计信息的数据框。...记住一个数据框就是一个向量的列表(也就是说各个列都是一个值的向量),如此我们便可以很容易地用这些函数作用于列上。最终我们将这些函数和lapply或sapply一起使用并作用于数据框的多列数据上。...我们有了22个国家,在这些国家中新病的年平均率大于全球新病率中间值的5倍。让我们创建一个国家代表了这22个国家的平均值: ? ? 现在让我们再创建一个国家代表了其它国家的平均值: ? ?...R 我们已经了解到在R中我们可以用max函数作用于数据框的列上以得到列的最大值。额外的,我们还可以用which.max来得到最大值的位置(等同于在Pandas中使用argmax)。...让我们来创建一个国家代表这个平均值,在这里我们使用rowMeans()。 ? ? 现在让我们创建一个国家代表其他国家。 ? ? 现在将这两个国家放在一起。 ? ?

    2K31

    【Mark一下】46个常用 Pandas 方法速查表

    你可以粗略浏览本文,了解Pandas的常用功能;也可以保存下来,作为以后数据处理工作时的速查手册,没准哪天就会用上呢~ 1创建数据对象 Pandas最常用的数据对象是数据框(DataFrame)和Series...数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...有关更多数据文件的读取将在第三章介绍,本节介绍从对象和文件创建数据框的方式,具体如表1所示: 表1 Pandas创建数据对象 方法用途示例示例说明read_table read_csv read_excel...info方法外,其他方法返回的对象都可以直接赋值给变量,然后基于变量对象做二次处理。...,默认计算方式为求均值 8 高级函数使用 Pandas能直接实现数据框级别高级函数的应用,而不用写循环遍历每条记录甚至每个值后做计算,这种方式能极大提升计算效率,具体如表8所示: 表8 Pandas

    4.9K20

    手把手 | 如何用Python做自动化特征工程

    转换作用于单个表(从Python角度来看,表只是一个Pandas 数据框),它通过一个或多个现有的列创建新特征。 例如,如果我们有如下客户表。...每个实体都必须有一个索引,该索引是一个包含所有唯一元素的列。也就是说,索引中的每个值只能出现在表中一次。 clients数据框中的索引是client_id,因为每个客户在此数据框中只有一行。...将数据框添加到实体集后,我们检查它们中的任何一个: 使用我们指定的修改模型能够正确推断列类型。接下来,我们需要指定实体集中的表是如何相关的。...例如,在我们的数据集中,clients客户数据框是loan 贷款数据框的父级,因为每个客户在客户表中只有一行,但贷款可能有多行。...一个例子是通过client_id对贷款loan表进行分组,并找到每个客户的最大贷款额。 转换:在单个表上对一列或多列执行的操作。一个例子是在一个表中取两个列之间的差异或取一列的绝对值。

    4.3K10

    Python代码实操:详解数据清洗

    (df) 通过Pandas生成一个6行4列,列名分别为'col1'、'col2'、'col3'、'col4'的数据框。...除了示例中直接通过pd.DataFrame来直接创建数据框外,还可以使用数据框对象的 df.from_records、df.from_dict、df.from_items 来从元组记录、字典和键值对对象创建数据框...,或使用 pandas.read_csv、pandas.read_table、pandas.read_clipboard 等方法读取文件或剪贴板创建数据框。...53, 22, 32, 43]}) print(df) # 打印输出 直接通过DataFrame创建一个7行2列的数据框,打印输出结果如下: col1 col2 0 1 12...先通过 df.copy() 复制一个原始数据框的副本,用来存储Z-Score标准化后的得分,再通过 df.columns 获得原始数据框的列名,接着通过循环判断每一列中的异常值。

    5K20

    Pandas速查卡-Python数据科学

    ('1900/1/30', periods=df.shape[0]) 添加日期索引 查看/检查数据 df.head(n) 数据框的前n行 df.tail(n) 数据框的后n行 df.shape() 行数和列数...df.groupby([col1,col2]) 从多列返回一组对象的值 df.groupby(col1)[col2] 返回col2中的值的平均值,按col1中的值分组(平均值可以用统计部分中的几乎任何函数替换...) df.pivot_table(index=col1,values=[col2,col3],aggfunc=max) 创建一个数据透视表,按col1分组并计算col2和col3的平均值 df.groupby...(col1).agg(np.mean) 查找每个唯一col1组的所有列的平均值 data.apply(np.mean) 在每个列上应用函数 data.apply(np.max,axis=1) 在每行上应用一个函数...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

    9.2K80

    多表格文件单元格平均值计算实例解析

    本教程将介绍如何使用Python编程语言,通过多个表格文件,计算特定单元格数据的平均值。准备工作在开始之前,请确保您已经安装了Python和必要的库,例如pandas。...每个文件的数据结构如下:任务目标我们的目标是计算所有文件中特定单元格数据的平均值。具体而言,我们将关注Category_A列中的数据,并计算每个Category_A下所有文件中相同单元格的平均值。...获取文件路径列表: 使用列表推导式获取匹配条件的文件路径列表。创建空数据框: 使用pandas创建一个空数据框,用于存储所有文件的数据。...循环处理每个文件: 遍历文件路径列表,读取每个CSV文件,并提取关注的列(例如Category_A)。将数据加入总数据框: 使用pd.concat()将每个文件的数据合并到总数据框中。...准备工作: 文章首先强调了在开始之前需要的准备工作,包括确保安装了Python和必要的库(例如pandas)。任务目标: 文章明确了任务的目标,即计算所有文件中特定单元格数据的平均值。

    19000

    Pandas库常用方法、函数集合

    ,适合将数值进行分类 qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列...“堆叠”为一个层次化的Series unstack: 将层次化的Series转换回数据框形式 append: 将一行或多行数据追加到数据框的末尾 分组 聚合 转换 过滤 groupby:按照指定的列或多个列对数据进行分组...:计算分组的标准差和方差 describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax...: 替换字符串中的特定字符 astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化...pandas.plotting.bootstrap_plot:用于评估统计数据的不确定性,例如均值,中位数,中间范围等 pandas.plotting.lag_plot:绘制时滞图,用于检测时间序列数据中的模式

    31510

    Python计算多个Excel表格内相同位置单元格的平均数

    我们现在的需求是,希望对于每一个名称为Ref_GRA_Y.csv格式的.csv文件,求取其中每一个单元格在所有文件中数据的平均值。...随后,我们使用glob.glob()函数结合文件夹路径和文件匹配模式,获取满足条件的.csv文件的路径列表,存储在file_paths变量中。...创建一个空的数据框combined_data,用于存储所有文件的数据。   接下来,我们使用一个循环,遍历file_paths列表中的每个文件路径。...对于每个文件路径,使用pd.read_csv()函数加载.csv文件,并将其存储在名为df的数据框中。其次,使用条件筛选语句df[df !...= 0]排除值为0的数据,并将结果存储在名为df_filtered的数据框中。

    11910

    Pandas profiling 生成报告并部署的一站式解决方案

    它为数据集提供报告生成,并为生成的报告提供许多功能和自定义。在本文中,我们将探索这个库,查看提供的所有功能,以及一些高级用例和集成,这些用例和集成可以对从数据框创建令人惊叹的报告!...该Overview包括总体统计的。这包括变量数(数据框的特征或列)、观察数(数据框的行)、缺失单元格、缺失单元格百分比、重复行、重复行百分比和内存中的总大小。...变量 报告的这一部分详细分析了数据集的所有变量/列/特征。显示的信息因变量的数据类型而异。 数值变量 对于数值数据类型特征,可以获得有关不同值、缺失值、最小值-最大值、平均值和负值计数的信息。...描述性统计:标准偏差、方差系数、峰度、均值、偏度、方差和单调性。 直方图选项卡显示变量的频率或数值数据的分布。通用值选项卡基本上是变量的 value_counts,同时显示为计数和百分比频率。...此信息将出现在数据集概述部分。对于此元数据,将创建一个名为“dataset”的新选项卡。

    3.3K10
    领券