首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何运用领域驱动设计 - 存储库

在上一篇文章中,我们已经了解过领域驱动设计中一个很核心的对象-聚合。在现实场景中,我们往往需要将聚合持久化到某个地方,或者是从某个地方创建出聚合。此时就会使得领域对象与我们的基础架构产生紧密的耦合,那么我们应该怎么隔绝这一层耦合关系,使它们自身的职责界限更加清晰呢?是的,这就要用到我们今天要讲的内容 - 存储库。在很多地方,我们喜欢叫它为仓储,特别是在现有的AspNetCore应用中,大量的应用都在引入Repository这种东西。那么究竟什么是存储库呢?我们现在的使用方式是正确的吗?它在领域驱动设计中又扮演着怎样的角色呢?本文将从不同的角度来带大家重新认识一下“存储库”这个概念,并且给出相应的代码片段(本教程的代码片段都使用的是C#,后期的实战项目也是基于 DotNet Core 平台)。

03
您找到你想要的搜索结果了吗?
是的
没有找到

IBC 2023 | 通过机器学习改善广播观众体验

保持低的广播网络延迟对于维持沉浸式观看体验至关重要,特别是在要求互联网或广播中心提供高质量媒体广播时。而目前存在的问题是重量级广播媒体流需要高传输数据速率与长时间寿命,其对资源与网络的占用会与传输短数据流产生冲突,导致交换机缓冲区过载或网络拥塞,从而出现丢包和由于重传超时导致的延迟(TCP-RTOs)。在广播中心中,媒体流通常属于大象流(elephant flows,EF)分类,短数据流被分类为老鼠流(mice flows,MF)。EF的快速性和提前检测功能使得SDN控制器可以对其重新规划路由并减少它们对广播 IP 网络内的 MF 的影响。这减少了数据包丢失,使得TCP-RTO不会被触发,从而可以保持较低的延迟并有良好的观看体验。

01

EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

01

EF-Net一种适用于双流SOD的有效检测模型(Pattern Recognition)

显著目标检测(SOD)在计算机视觉领域得到了广泛的关注。但面临低质量的深度图,现有模型的检测结果都不是很理想。为了解决这一问题,该文提出了一种新型多模态增强融合网络(EF-Net),用于有效的RGB-D显性检测。具体来说,首先仅仅利用RGB图像提示映射模块来预测提示映射,编码突出对象的粗略信息。然后利用得到的提示图经过深度增强模块来增强深度图,从而抑制噪声并锐化对象边界。最后,该文构造了分层聚合模块,用于融合增强后的深度图与RGB图像中提取的特征,以精确地检测突出对象。该文提出的EFNet利用增强和融合框架进行显着性检测,充分利用了RGB图像和深度图中的信息,有效地解决了深度图的低质量问题,显著提高了显着性检测性能。在五个广泛使用的基准数据集上的广泛实验表明,该方法在五个关键评价指标方面优于12种最先进的RGB-D显着性检测方法。

02

Spring源码剖析5:JDK和cglib动态代理原理详解

本文转自五月的仓颉 https://www.cnblogs.com/xrq730 本系列文章将整理到我在GitHub上的《Java面试指南》仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下Star哈 文章将同步到我的个人博客: www.how2playlife.com 本文是微信公众号【Java技术江湖】的《Spring和SpringMVC源码分析》其中一篇,本文部分内容来源于网络,为了把本文主题讲得清晰透彻,也整合了很多我认为不错的技术博客内容,引用其中了一些比较好的博客文章,如有侵权,请联系作者。 该系列博文会告诉你如何从spring基础入手,一步步地学习spring基础和springmvc的框架知识,并上手进行项目实战,spring框架是每一个Java工程师必须要学习和理解的知识点,进一步来说,你还需要掌握spring甚至是springmvc的源码以及实现原理,才能更完整地了解整个spring技术体系,形成自己的知识框架。 后续还会有springboot和springcloud的技术专题,陆续为大家带来,敬请期待。 为了更好地总结和检验你的学习成果,本系列文章也会提供部分知识点对应的面试题以及参考答案。 如果对本系列文章有什么建议,或者是有什么疑问的话,也可以关注公众号【Java技术江湖】联系作者,欢迎你参与本系列博文的创作和修订。 前言 xml的读取应该是Spring的重要功能,因为Spring的大部分功能都是以配置做为切入点的。 我们在静态代码块中读取配置文件可以这样做: //这样来加载配置文件 XmlBeanFactory factory new XmlBeanFactory ( new ClassPathResource ( "beans.xml" )); (1)XmlBeanFactory 继承 AbstractBeanDefinitionReader ,使用ResourceLoader 将资源文件路径转换为对应的Resource文件。 (2)通过DocumentLoader 对 Resource 文件进行转换,将 Resource 文件转换为 Document 文件。 (3)通过实现接口 BeanDefinitionDocumentReader 的 DefaultBeanDefinitionDocumentReader 类对Document 进行解析,并且使用 BeanDefinitionParserDelegate对Element进行解析。 step1: bb0bf7543226c4ada238d93363f864d39da8e3e8 在平常开发中,我们也可以使用Resource 获取 资源文件: Resource resource new ClassPathResource ( "application.xml" ); InputStream in = resource . getInputStream (); step2: 13bd511377c0957e4ef8daebdf457585a9acabea 在资源实现加载之前,调用了 super(parentBeanFactory) -- /*Ignore the given dependency interface for autowiring.(忽略接口的自动装配功能)/ 调用XmlBeanDefinitionReader 的 loadBeanDefinitions()方法进行加载资源: (1) 对Resource资源进行编码 (2) 通过SAX读取XML文件来创建InputSource对象 (3) 核心处理 7613f54877fef111ccbe68f2c3a96a9588029fb3 可以很直观的看出来是这个function是在解析xml文件从而获得对应的Document对象。 4b3425c37260bbb7e68ace81867259089871a0db 在doLoadDocument方法里面还存一个方法getValidationModeForResource()用来读取xml的验证模式。(和我关心的没什么关系,暂时不看了~) 转换成document也是最常用的方法: 869effccb2e4f7b69e0b53d17fe0a2b50044d61b step3 : 我们已经step by step 的看到了如何将xml文件转换成Document的,现在就要分析是如何提取和注册bean的。/*Register the bean definitions contained in the given DOM document/ 2daf08bfd105a15d3c5eaf411fdb0083b3969f81 参

02

ICLR 2024 最新研究 DYST 技术让视频表征更精准、更智能

首先来看引言部分,概述了在视觉表示学习领域的主流研究集中于捕捉个别图像的语义和2D结构的现状,并指出本研究的重点是同时捕捉场景的3D结构和动态,这对于规划、空间和物理推理以及与现实世界的有效互动至关重要。文章强调了最近在3D视觉场景的生成模型方面取得的进展,特别是从使用体素网格、点云或纹理网格等显式表示转向通过直接优化新视图合成(NVS)来学习隐式表示的转变。如神经辐射场(Neural Radiance Fields)虽然最初限于单一场景并需要大量输入图像、控制的照明、精确的相机姿态和长时间的处理,但随后已被扩展以处理照明变化、跨场景泛化、少量图像工作、缺失相机和动态场景。

01
领券