首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在连接深度特征向量和手工提取向量之后,我是否可以使用最终池化层来找到最好的公共特征?

在连接深度特征向量和手工提取向量之后,使用最终池化层可以帮助我们找到最好的公共特征。

最终池化层是一种常用的特征汇聚方法,通过对连接后的特征向量进行池化操作,将其降维为定长的向量表示。这样做的好处是可以减少特征维度,提高计算效率,并且更有利于后续的分类、聚类或其他机器学习任务。

最终池化层的选择与具体应用场景有关。常用的池化方法包括平均池化和最大池化。平均池化对特征向量进行平均操作,将所有特征的平均值作为汇聚后的特征表示;最大池化则选择特征向量中的最大值作为汇聚后的特征。

最终池化层的选择还可以考虑使用降维技术,如主成分分析(PCA)或线性判别分析(LDA),以进一步提取特征向量中的重要信息。

在腾讯云中,可以使用腾讯云的机器学习平台AI Lab(https://cloud.tencent.com/product/tfhub)提供的相关服务来实现最终池化层。该平台提供了丰富的机器学习工具和算法库,可以方便地进行特征提取、特征汇聚和模型训练等操作。

总之,通过连接深度特征向量和手工提取向量,并使用最终池化层来找到最好的公共特征,可以提高特征表达的效果,为后续的机器学习任务提供更好的输入。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • SPPNet总结

    RCNN使用CNN作为特征提取器,首次使得目标检测跨入深度学习的阶段。但是在RCNN中,因为全连接层的神经元个数是固定的(权重矩阵的维数是固定的),所以采取对于每一个区域候选都需要首先将图片放缩到固定尺寸(227×227),然后为每个区域候选提取CNN特征的方案。这里存在两个瓶颈,第一重复为每个region proposal提取特征是及其费时的,Selective Search对于每幅图片产生2k左右个region proposal,也就是意味着一幅图片需要经过2k次完整的CNN计算得到最终的结果。第二对于所有的region proposal放缩到固定尺寸会导致我们不期望看到的几何形变,而且由于速度瓶颈的存在,不可能采用多尺度或者是大量的数据增强去训练模型,这就导致它的性能必然较差。

    02

    使用Keras进行深度学习:(三)使用text-CNN处理自然语言(下)

    前言:在上一篇文章中,已经介绍了Keras对文本数据进行预处理的一般步骤。预处理完之后,就可以使用深度学习中的一些模型进行文本分类。在这篇文章中,将介绍text-CNN模型以及使用该模型对imdb影评数据集进行情感分析。 正如上篇文章所说,文本分类的关键在于准确提炼文档或者句子的中心思想,而提炼中心思想的方法是抽取文档或句子的关键词作为特征,基于这些特征去训练分类器并分类。每个类别可以理解为一种中心思想,如情感分析中,分类器将样本分为两类,一类为正面评论,另一类为负面评论,而正面和负面评论正是该文本或句子的

    04

    Milvus开源向量搜索引擎,轻松搭建以图搜图系统

    当您听到“以图搜图”时,是否首先想到了百度、Google 等搜索引擎的以图搜图功能呢?事实上,您完全可以搭建一个属于自己的以图搜图系统:自己建立图片库;自己选择一张图片到库中进行搜索,并得到与其相似的若干图片。 Milvus 作为一款针对海量特征向量的相似性检索引擎,旨在助力分析日益庞大的非结构化数据,挖掘其背后蕴含的巨大价值。为了让 Milvus 能够应用于相似图片检索的场景,我们基于 Milvus 和图片特征提取模型 VGG 设计了一个以图搜图系统。 正文分为数据准备、系统概览、 VGG 模型、API 介绍、镜像构建、系统部署、界面展示七个部分。数据准备章节介绍以图搜图系统的数据支持情况。系统概览章节展示系统的整体架构。 VGG 模型章节介绍了 VGG 的结构、特点、块结构以及权重参数。 API 介绍章节介绍系统的五个基础功能 API 的工作原理。镜像构建章节介绍如何通过源代码构建客户端和服务器端的 docker 镜像。系统部署章节展示如何三步搭建系统。界面展示章节会展示系统的搜索界面。

    07

    Bioinformatics | 通过在深度神经网络中应用局部和全局特征来预测蛋白质相互作用位点

    今天给大家介绍中南大学李敏教授课题组在Bioinformatics上发表的文章“Protein–protein interaction site prediction through combining local and global features with deep neural networks”。先前的研究以及证据已经表明,全局序列特征对于预测蛋白质相互作用位点来说会有很大帮助。虽然现有的计算方法已经取得了不错的预测表现,但是它们的模型中都没有采用全局序列特征,因此可能会使得算法性能有所下降。为解决此问题,作者在文章中提出了一种新型的文本卷积网络来获取蛋白质序列的全局特征,并将用滑动窗口方法获取的局部特征信息与之结合,来共同预测蛋白质相互作用位点且取得了不错的效果。随后作者又通过对比实验继续研究了全局序列特征的有效性与最佳占比情况。

    01

    ​终于看到一个不在 Backbone上研究 ResNet的了!直接优化小目标检测性能,不卷ImageNet-1K数据集!

    检测输电和配电塔对于电力网的安全可靠运行至关重要,因为这些塔的位置和数量是设计电力网络拓扑和规划其扩展的关键参数。将遥感(RS)和深度学习技术相结合作为一种广泛采用的目标检测方法具有多种优势,包括能够快速覆盖大面积、减少人为错误以及提高检测精度。卷积神经网络(CNNs)已成为深度学习中的主要方法,因为它们可以从原始图像像素自动学习判别特征,捕捉图像区域之间的复杂空间关系,并获得更好的检测性能。基于CNN的主流目标检测器可以分为基于 Anchor 框和无需 Anchor 框两类。基于 Anchor 框的检测器使用预定义的 Anchor 框来预测目标位置和大小,这提供了更好的准确性,但可能会受到 Anchor 框设计偏差的影响。无需 Anchor 框的检测器直接回归目标的中心和大小,不使用 Anchor 框。

    01

    SPPnet论文总结

    小菜看了SPPNet这篇论文之后,也是参考了前人的博客,结合自己的一些观点写了这篇论文总结。 这里参考的连接如下: [http://blog.csdn.net/u013078356/article/details/50865183] 论文: 《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》 本篇博文主要讲解大神何凯明2014年的paper:《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》,这篇paper主要的创新点在于提出了空间金字塔池化。paper主页:http://research.microsoft.com/en-us/um/people/kahe/eccv14sppnet/index.html 这个算法比R-CNN算法的速度快了n多倍。我们知道在现有的CNN中,对于结构已经确定的网络,需要输入一张固定大小的图片,比如224*224、32*32、96*96等。这样对于我们希望检测各种大小的图片的时候,需要经过裁剪,或者缩放等一系列操作,这样往往会降低识别检测的精度,于是paper提出了“空间金字塔池化”方法,这个算法的牛逼之处,在于使得我们构建的网络,可以输入任意大小的图片,不需要经过裁剪缩放等操作,只要你喜欢,任意大小的图片都可以。不仅如此,这个算法用了以后,精度也会有所提高,总之一句话:牛逼哄哄。

    03

    长文解读|深度学习+EEG时频空特征用于跨任务的心理负荷量评估

    心理负荷量显著影响特定任务中的人员绩效。适当的心理负荷量可以提高工作效率。但是,沉重的脑力劳动会降低人类的记忆力,反应能力和操作能力。由于某些职业的脑力劳动量很大,例如飞行员,士兵,机组人员和外科医生,沉重的脑力劳动会导致严重的后果。因此,心理负荷量评估仍然是一个重要的课题。 近年来,基于脑电图的脑力负荷评估取得了重要成就。但是,出色的结果通常集中于在同一天完成单一心理任务的单个被试。这些方法在实验室外的效果不佳。要达到好的效果,必须克服三个问题,即跨被试,跨日期和跨任务问题。所谓的跨任务问题就是算法可以在不同的实验范式中评估心理负荷量。跨任务的心理负荷量评估,难点在于找到可以推广到各种心理任务的高鲁棒性的EEG特征。特征集通常使用两种方法生成:手工设计特征和通过深度学习提取特征。 最常用的手工设计特征是从5个频段(δ[1-3 Hz],θ[5-8 Hz],α[9-12 Hz],β[14-31 Hz]和γ[33-42 Hz])和2个扩展频带(γ1 [33-57 Hz]和γ2 [63-99 Hz])中提取的功率谱密度(PSD)特征。事件相关电位(ERP)和事件相关同步/去同步(ERS/ ERD)也广泛用于对EEG信号进行分类。 但是,这些手工设计的特征对于跨任务问题未取得可使用的结果。原因除了设计的特征不适合之外,各种任务下的心理负荷量级别的定义也可能导致误导分类结果,心理负荷量状况的标签可能被主观地和错误地定义。 近期,来自清华大学精密仪器系精密测量技术与仪器国家重点实验室的研究团队在IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING杂志发表题目为《Learning Spatial–Spectral–Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment》研究论文,其设计了两种不同类型的心理负荷量实验,通过行为数据验证了实验的有效性,并提出了一个基于深度循环神经网络(RNN)和3D卷积神经网络的级联网络结构(R3DCNN),以在没有先验知识的情况下学习跨任务的脑电特征。

    00

    深度学习简化总结合注意力与循环神经网络推荐的算法

    互联网将全球信息互连形成了信息时代不可或缺的基础信息平台,其中知识分享服务已经成为人们获取信息的主要工具。为了加快互联网知识共享,出现了大量以知乎为代表的问答社区[1] 。用户注册社区后可交互式提出与回答问题达到知识共享和交换。然而,伴随用户急剧增多,平台短时间内积攒了数目巨大、类型多样的问题,进进超过有效回复数,严重降低了用户服务体验。如何将用户提出的问题有效推荐给可能解答的用户,以及挖掘用户感兴趣的问题是这些平台面临的严重挑战。这种情况下,工业界和学术界对以上问题开展了广泛研究,提出了一些针对问答社区的专家推荐方法提高平台解答效率[2] 。现有工作大多利用基于内容的推荐算法解决该问题[3-6],比如配置文件相似性、主题特征相似性等,匹配效果依赖于人工构建特征的质量。近年来,以卷积神经网络(Convolutional Neural Network, CNN)、Attention 注意力机制为代表的深度学习技术不断収展,幵且已经成功应用到文本挖掘领域。相比于传统方法,深度模型可以学习到表达力更强的深度复杂语义特征。于是,出现了一些深度专家推荐算法,比如DeepFM[7] 、XDeepFM[8] 、CNN-DSSM 等,大大幅提升了传统推荐算法的准确度。虽然以上工作很好地实现了专家推荐,但都是根据用户长期关注的话题及相关解答历史刻画用户兴趣,产生的推荐结果也相对固定。随着时间推移,用户会不断学习新知识,其关注点及擅长解答的问题也很可能収生改变,由此会产生用户兴趣变化,甚至短期兴趣漂移[10] 。这些动态变化会严重影响推荐算法效果,所以如何动态刻画用户兴趣就显得尤为重要。其实,用户历史回答行为具有明显的时间序列关系,通过对已解答问题的序列分析有很大可能感知用户兴趣变化。近年来,循环神经网络(Recurrent Neural Network, RNN)被广泛用来处理序 列 数 据 , 比 如 长 短 期 记 忆 网 络 ( Long Short-Term Memory, LSTM)、门控循环单元(Gate Recurrent Unit, GRU)等,可以根据前面状态输入结合当前模型状态产生当前输出。该类方法可与 CNN结合处理问题内容序列数据,从用户历史解答行为中挖掘长期与短期兴趣,从而动态产生当前兴趣。综合以上讨论,本文提出了结合注意力机制与循环神经网络的问答社区专家推荐算法,能够根据用户历史解答序列动态构建用户兴趣特征,实现推荐结果随时间収展不断调整。 主要工作与贠献如下:(1)基于预训练词嵌入模型分别实现了问题标题与主题标签的语义嵌入向量表示,将 CNN 卷积模型与 Attention 注意力机制结合,构造基于上下文的问题编码器,生成不同距离上下文的深度特征编码。(2)问题编码器对用户历史回答的问题迚行序列编码,利用长短期记忆循环神经网络 Bi-GRU 模型处理编码后的问题序列,幵结合用户主题标签嵌入向量构造用户兴趣动态编码器。(3)将问题与用户编码器产生的深度特征点积运算后加入全连接层实现相似度计算产生推荐结果。在知乎公开数据集上的对比实验结果表明该算法性能要明显优于目前比较流行的深度学习专家推荐算法。

    02
    领券