随机初始化 He初始化 总结 参考资料 前言 良好的初始化权重有以下的好处: 加快梯度下降的收敛速度 增加梯度下降收敛到较低训练(和泛化)错误的几率 所以一个良好的初始化也是非常重要的,这里尝试三种初始化化方式...: 零初始化,将权重参数初始化为零。...随机初始化,使用随机的方式,初始化权重参数。 He初始化,这个公式的初始化方式。 我们来尝试这个三种方法吧。 模型函数 编写一个model函数,使用这个函数可以测试各种初始化权重参数的效果。...在神经网络中初始化的参数有两种类型: image.png def initialize_parameters_zeros(layers_dims): """ Arguments:...随机初始化 随机初始化可以打破对称,让我们随机初始化权重。在随机初始化之后,每个神经元可以继续学习其输入的不同功能。我们只是随机初始化权重参数,偏差还是继续初始化为零。
使隐藏层饱和了, 跟之前我们说的输出层饱和问题相似, 对于输出层,我们用改进的cost函数,比如cross-entropy, 但是对于隐藏层, 我们无法通过cost函数来改进 更好的方法来初始化权重?...因为传统的初始化权重问题是用标准正态分布(均值为0,方差为1)随机初始化的,这其实是存在不合理的部分。...标准正态分布: 可以看出真实数据的分布其实是在靠近坡峰的部分,符合正态分布的。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
在深度神经网络中,网络权重的初始化非常关键,因为它对网络的训练速度、收敛能力以及最终的性能都有重大影响。...合理的初始化可以打破这种对称性,使得每个神经元可以学习到不同的表征。 梯度消失 {/} 爆炸问题:深度神经网络在反向传播时容易遇到梯度消失或者梯度爆炸的问题。...合理的初始化方法可以缓解这些问题,确保梯度在合适的范围内。 加快收敛速度:适当的权重初始化可以帮助模型更快地收敛。如果权重初始化得太远离最优解,模型需要更多时间来调整这些权重以达到最佳性能。...总之,合理选择和调整深度学习模型中的权重初始化方法是确保模型良好训练行为和高性能表现的关键步骤之一。...值得注意的是,PyTorch 的 torch.nn.init 模块中的所有函数都旨在用于初始化神经网络参数,因此它们都在 torch.no_grad() 模式下运行,不会被自动求导考虑在内。
需要注意的是我们并不知道在训练神经网络中每一个权重最后的值,但是如果进行了恰当的数据归一化后,我们可以有理由认为有一半的权重是正的,另一半是负的。...答案参考【知乎:为什么神经网络在考虑梯度下降的时候,网络参数的初始值不能设定为全0,而是要采用随机初始化思想?】 设想你在爬山,但身处直线形的山谷中,两边是对称的山峰。...比如,如果一个神经网络层的权重非常小,那么在反向传播算法就会计算出很小的梯度(因为梯度gradient是与权重成正比的)。...从这个推导中我们可以看到如果我们想让\(s\)和所有的输入都有相同的方差,那么需要保证在初始化的时候每个权重\(w\)的方差是\(\frac{1}{n}\)。...这里我们不会展开来讲解这项技术,因为它已经在上面那提供链接的论文中详细的介绍了,但是请注意,在神经网络中使用批量标准化已经成为一种非常常见的做法。在实践中,使用批量标准化的网络对糟糕的初始化更加健壮。
前言 神经网络中的权重(weight)初始化是个常常被忽略的问题。...在以前看一些关于神经网络的资料时,我也经常看到“权重初始化”这一步,但一直错误地以为“权重初始化”等价于“权重随机初始化”,以为仅仅将权重初始化为很小的随机数即可,但其实它的原因除了打破梯度更新对称性之外...所以接下来文章分为两部分,分别介绍为什么需要进行权重初始化,以及如何进行权重初始化。...权重初始化:why 在创建了神经网络后,通常需要对权重和偏置进行初始化,大部分的实现都是采取Gaussian distribution来生成随机初始值。...所以当出现这样的情况时,在权重中进行微小的调整仅仅会给隐藏层神经元的激活值带来极其微弱的改变。而这种微弱的改变也会影响网络中剩下的神经元,然后会带来相应的代价函数的改变。
这意味着如果我们的权值矩阵被初始化为过大或过小的值,所有有用的信息都会在sigmoid函数中丢失。 如果我们使用ReLu非线性,这就不那么重要了,但是在将权重初始化为大值或小值时还有其他问题。...考虑一个有100层的深度神经网络。在每一步,权重矩阵乘以来自前一层的激活。如果每一层的激活大于1,当它们被重复乘以100次时,它们就会不断变大,爆炸到无穷大。类似地,如果激活值小于1,它们将消失为零。...这个问题通过Xavier的初始化得到了解决,Xavier的初始化建议我们从一个均匀分布中随机初始化权重,如下图所示。...Xavier 初始化的 Uniform分布 现在,Xavier的初始化是通过从标准正态分布中选择权重来完成的,每个元素都要除以输入维度大小的平方根。在PyTorch中,代码如下所示。...所以在PyTorch中,Kaiming 初始化如下所示。
近几年,随着深度学习的大火,越来越多的人选择去入门、学习、钻研这一领域,正确初始化神经网络的参数对神经网络的最终性能有着决定性作用。...梯度消失问题本质上是用反向传播的方式对权值参数进行更新时梯度过小,在一个深度神经网络中,连乘多次梯度呈现指数衰减,导致靠近输入层的权值参数更新缓慢或者更新停止;而梯度爆炸问题本质上用反向传播的方式对权值参数进行更新时候梯度过大...实验结果分析: a)如果将所有的权重都设置为0,则每一层激活函数的输出都是0。 ? 这是因为如果初始化权重全是0,神经元在训练过程中都学习到相同的特征,同一层的神经元是无差异的。...而为了训练过程中参数能够比较好地去更新,需要一种合理的初始化参数的方式,使得每一层激活函数的输出的方差不变,而这也是Xavier初始化的主要思想。...当激活函数为ReLU函数时,用Xavier方法作为权重的初始化,它的表现效果并不是很好(见图左),这是因为在ReLU网络中,每一层有一半的神经元被激活,另一半为0(当输入小于0时),所以如果要保持方差不变
那么,在寻找更好解的过程中,这些算法的本质都是: 初始化时,采用随机解 在寻找更好解的过程中,启用随机算法 对上面两步做一些解释。...5 Random Initialization in Neural Networks 深度学习中训练网络是通过随机梯度下降,它启用随机性是为了发现足够好的权重值。...特别地,随机梯度下降要求权重参数被初始化为一个很小的随机值,如[0.01,0.32,...]等。训练时,在每一个epoch都会重新对训练数据洗牌,这样确保在不同的batch梯度计算会不同。...相反,对于一个训练集上得到的模型用于生产环境时,每次最终状态如果权重参数都相同将会给模型配置评估带来帮助。 8 初始化权重参数的方法 传统的,权重参数被设置为一个很小的随机值。...神经网络的权重参数初始化时一项重要的研究领域,精心设计的初始化参数会加速学习过程。
大数据文摘出品 来源:medium 编译:李雷、刘思佳、张弛 在进行各种小实验和思维训练时,你会逐步发现为什么在训练深度神经网络时,合适的权重初始化是如此重要。...那么如何使用不同的方法初始化神经网络中的每层权重呢?...为什么要初始化权重 权重初始化的目的是防止在深度神经网络的正向(前向)传播过程中层激活函数的输出损失梯度出现爆炸或消失。...矩阵乘法是神经网络的基本数学运算。在多层深度神经网络中,一个正向传播仅需要在每层对该层的输入和权重矩阵执行连续的矩阵乘法。这样每层的乘积成为后续层的输入,依此类推。...在他们的实验中,他们观察到Xavier初始化使一个5层网络能够将每层的权重梯度维持在基本一致的方差上。 ?
在进行各种小实验和思维训练时,你会逐步发现为什么在训练深度神经网络时,合适的权重初始化是如此重要。 那么如何使用不同的方法初始化神经网络中的每层权重呢?...为什么要初始化权重 权重初始化的目的是防止在深度神经网络的正向(前向)传播过程中层激活函数的输出损失梯度出现爆炸或消失。...矩阵乘法是神经网络的基本数学运算。在多层深度神经网络中,一个正向传播仅需要在每层对该层的输入和权重矩阵执行连续的矩阵乘法。这样每层的乘积成为后续层的输入,依此类推。...在他们的实验中,他们观察到Xavier初始化使一个5层网络能够将每层的权重梯度维持在基本一致的方差上。...通过该值缩放权重矩阵a将使每个单独的ReLU层平均具有1的标准偏差。 正如我们之前所展示的那样,保持层激活的标准偏差大约为1将允许我们在深度神经网络中堆叠更多层而不会出现梯度爆炸或消失。
不同的神经网络权重初始值会导致不同的神经网络训练结果,一个良好初始化权重可以对于神经网络的训练带来很大帮助,比如加速梯度下降(Gradient Descent)的收敛;增加梯度下降(Gradient Descent...下面以一个简单的分类问题为例,比较3种不同的神经网络权重初始化方法对训练结果的影响。...2.不同权重初始化方法对比 我们使用如下3层神经网络对比3种不同的初始化方法对训练结果的影响。...神经网络的初始Cost非常大,这是因为初始化的Weight非常大。如果随机初始化的权重比较大,神经网络的优化迭代过程就比较慢,甚至会出现梯度消失和梯度爆炸的情况。...神经网络权重初始化的经验: 1、当激活函数是tanh时,建议使用如下初始化方法: 2、当激活函数是ReLU时,建议使用如下初始化方法: 还有一些可以尝试如下方法: 如果以上初始化的方法不能满足需求
要理解这种解决问题的方法,首先必须了解非确定性和随机算法的作用,以及随机优化算法在搜索过程中利用随机性的要求。 在这篇文章中,你会了解为什么神经网络权重必须被随机初始化的全部背景知识。...在随机优化算法中初始化和搜索期间使用随机性。 随机梯度下降是随机优化算法,需要随机初始化网络权重。 让我们开始吧。 ?...如果我们在搜索过程中最大化了得分,我们可以将空间中的“小山丘”视为局部最优,将最大的山丘视为全局最优。 神经网络中的随机初始化 我们通常使用被称为随机梯度下降的随机优化算法训练人工神经网络。...具体来说,随机梯度下降要求将网络的权重初始化为小的随机值(随机,但接近零,例如[0.0,0.1])。在搜索过程中,在每个周期前的训练数据集的混洗中也使用随机性,这反过来导致每个批次的梯度估计的差异。...总结 在这篇文章中,你了解了为什么必须随机初始化神经网络权重。 具体来说,你学到了: 对于具有挑战性的问题的非确定性和随机算法的必要性。 在随机优化算法中初始化和搜索期间使用随机性。
参数共享或权重复制是深度学习中经常被忽略的领域。但是了解这个简单的概念有助于更广泛地理解卷积神经网络的内部。卷积神经网络(cnn)能够使那些通过网络馈送的图像在进行仿射变换时具有不变性。...局部感受领域 权值共享(参数共享) 空间子采样 在本文中,我们将探索权值共享,并了解它们的用途以及它们在CNN架构中的优势。本文针对从事机器学习或更具体地说是深度学习的各个层次的人。 介绍 ?...在CNN的训练阶段,可以学习过滤器中的权重值。卷卷积层的输出维数有一个深度分量,如果我们对输出的每一段进行分割,我们将得到一个二维平面的特征映射。...在单个二维平面上使用的过滤器包含一个权重,该权重在同一平面上使用的所有过滤器之间共享。 这样做的好处是,我们在输入数据的另一部分与输入数据的另一部分保持相同的特征检测器。...将理论付诸实践 本节的目的是揭示卷积神经网络中发生的权值共享的好处。 我们将在两种流行的CNN架构(LeNet和AlexNet)的第一个卷积层中得出不带权值共享和权值共享的可训练权重的数量。
一、写在前面 界面控件的初始化一般通过 findViewByid 来查找绑定再强制转换,这项工作只是个纯体力活没有任何营养,一般常用的是使用匿名内部类的方式: 首先需要获取到 layout 中布局页面的...android:layout_centerHorizontal="true" android:onClick="login" android:text="登录" /> 在xml...内为控件指定后,在MainActivity类中创建相对应的方法: public void login(View view){ Toast.makeText(MainActivity.this,...stub Toast.makeText(getApplicationContext(), "点击", Toast.LENGTH_LONG).show(); } } 三、不初始化类似...ToggButton、CheckBox的控件 在xml内: android:onClick="check" <ToggleButton android:id="@+id/tg_oncheck
文 |AI_study 我们的神经网络 在本系列的最后几篇文章中,我们已经开始构建CNN,我们做了一些工作来理解我们在网络构造函数中定义的层。...我们将可学习的参数是网络内部的权重,它们存在于每一层中。 获取网络的实例 在PyTorch中,我们可以直接检查权重。让我们获取我们的网络类的一个实例并查看它。...在对象的情况下,属性是使用值来初始化的,这些值实际上可以是其他对象。通过这种方式,对象可以嵌套在其他对象中。 我们的网络类就是这种情况,其网络类属性是使用PyTorch 层类的实例初始化的。...初始化对象后,我们可以使用网络变量访问对象。 在开始使用新创建的网络对象之前,请查看将网络传递给Python的print() 函数时会发生什么。...这是由于权重张量在高度和宽度轴上均为2阶。
来源商业新知网,原标题:神经网络中的权重初始化一览:从基础到Kaiming 在进行各种小实验和思维训练时,你会逐步发现为什么在训练深度神经网络时,合适的权重初始化是如此重要。...那么如何使用不同的方法初始化神经网络中的每层权重呢?...为什么要初始化权重 权重初始化的目的是防止在深度神经网络的正向(前向)传播过程中层激活函数的输出损失梯度出现爆炸或消失。...矩阵乘法是神经网络的基本数学运算。在多层深度神经网络中,一个正向传播仅需要在每层对该层的输入和权重矩阵执行连续的矩阵乘法。这样每层的乘积成为后续层的输入,依此类推。...在他们的实验中,他们观察到Xavier初始化使一个5层网络能够将每层的权重梯度维持在基本一致的方差上。
目录Tensor在神经网络中的角色 实现权重聚合的算法1. Tensor的基本概念2. Tensor的数据结构举例一维Tensor(向量)二维Tensor(矩阵)三维及以上Tensor3....激活函数输出Tensor在神经网络中的角色 在神经网络中,tensor(张量)是一个核心概念,扮演着数据容器的角色。张量可以看作是标量、向量和矩阵的高维推广,能够存储多维数组的数据。...在神经网络中,张量通常用于表示输入数据、权重、偏置项、激活值、梯度以及最终的输出等。...反向传播:在训练过程中,梯度(也是张量)通过神经网络反向传播,用于更新权重和偏置。 实现权重聚合的算法权重聚合通常不是神经网络中的一个标准术语,但我们可以理解为如何更新或结合多个权重张量。...权重(Weights)描述:权重是神经网络中最基本的参数之一,它们定义了输入到输出之间的线性变换。在卷积层(Conv2d)、全连接层(Linear)等中都会存在权重参数。
一个 class 文件被加载到内存中需要经过 3 大步:装载、链接、初始化。...比如: public static int value = 100; 在准备阶段,JVM 会为 value 分配内存,并将其设置为 0。而真正的值 100 是在初始化阶段设置。...在 main 方法中通过 invokevirtual 指令调用了 print 方法,“Foo.print:()V"就是一个符号引用,当 main 方法执行到此处时,会将符号引用“Foo.print:()...对于符号引用和直接引用,可以将其与生活中的微信聊天进行类比,在微信好友列表中,保存的是好友的名称或者别名(也就是符号引用),当我们真正给某个好友发消息时,计算机(JVM)会根据好友的名称找到对象计算机的...比如: public static int value = 100; 在准备阶段 value 被分配内存并设置为 0,在初始化阶段 value 就会被设置为 100。
目前,Transformers 已经成为序列建模的强大神经网络架构。预训练 transformer 的一个显著特性是它们有能力通过提示 conditioning 或上下文学习来适应下游任务。...由于策略在源 RL 算法的训练过程中持续改进,因此 AD 不得不学习改进算子以便准确地建模训练历史中任何给定点的动作。...通过将算法视为长期历史条件策略,他们假设任何生成学习历史的算法都可以通过对动作执行行为克隆来转换成神经网络。...首先,通过在许多不同的任务上运行单独的基于梯度的 RL 算法来收集学习历史数据集。接下来,训练具有多情节上下文的序列模型来预测历史中的动作。...为了回答这个问题,该研究保留测试集数据中沿源算法历史的不同点采样策略,然后,使用此策略数据预先填充 AD 和 ED 的上下文,并在 Dark Room 的环境中运行这两种方法,将结果绘制在图 5 中。
对于某个时刻的窗口,通过神经网络的非线性变换,将这个窗口内的输入值转换为某个特征值,随着窗口不断往后移动,这个Filter对应的特征值不断产生,形成这个Filter的特征向量。...一般在Pooling层之后连接全联接层神经网络,形成最后的分类过程。...这篇论文在池化层时将通过两个实体位置将 feature map 分为三段进行池化,其目的是为了更好的捕获两个实体间的结构化信息。最后,通过 softmax 层进行分类。 ...这里只简要各层的功能: 输入层:将原始句子输入该层; 向量层:将每个单词映射到一个低维向量; LSTM层:利用BLSTM从输入的向量得到该句子的强特征 关注层:产生一个权重向量,将LSTM中的每一个时间节点通过这个权重向量联结起来...修改完后运行 Python3test_GRU.py 在众多评测结果中我找到的比较好的结果是iter16000,结果如下 Evaluating P@Nfor iter 16000 Evaluating P
领取专属 10元无门槛券
手把手带您无忧上云