首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Apache Atlas中,有没有办法在启用硬删除后删除/清除软删除的实体?

在Apache Atlas中,启用硬删除后,可以通过以下步骤删除/清除软删除的实体:

  1. 确保已启用硬删除功能:在Atlas的配置文件中,找到atlas.enable.soft.delete参数,并将其设置为false,以启用硬删除功能。
  2. 登录到Atlas的Web界面:使用管理员账户登录到Atlas的Web界面。
  3. 导航到实体列表:在导航栏中选择相应的实体类型,例如表、列、数据库等。
  4. 查找软删除的实体:使用过滤器或搜索功能,找到已软删除的实体。
  5. 恢复软删除的实体:对于每个软删除的实体,选择相应的操作,通常是“恢复”或“还原”,以将其恢复到活动状态。
  6. 硬删除实体:对于已恢复的实体,选择相应的操作,通常是“删除”或“彻底删除”,以永久删除实体。

请注意,以上步骤是基于Apache Atlas的默认功能和界面,具体步骤可能会因版本和配置的不同而有所变化。此外,Apache Atlas是一个开源项目,可以根据需要进行自定义和扩展。

对于腾讯云相关产品和产品介绍链接地址,由于要求不能提及具体品牌商,建议参考腾讯云的文档和官方网站,以获取与Apache Atlas相关的产品和服务信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

卡3

51 . 测试1MB以上的存储器。 . 52 所有ISA只读存储器ROM进行初始化,最终给PCI分配IRQ号等初始化工作。 已完成1MB以上的存储器测试;即将准备回到实址方式。 进入键盘检测。 53 如果不是即插即用BIOS,则初始化串口、并口和设置时种值。 保存CPU寄存器和存储器的大小,将进入实址方式。 . 54 . 成功地开启实址方式;即将复原准备停机时保存的寄存器。 扫描“打击键” 55 . 寄存器已复原,将停用门电路A-20的地址线。 . 56 . 成功地停用A-20的地址线;即将检查BIOS ROM数据区。 键盘测试结束。 57 . BIOS ROM数据区检查了一半;继续进行。 . 58 . BIOS ROM的数据区检查结束;将清除发现<ESC>信息。 非设置中断测试。 59 . 已清除<ESC>信息;信息已显示;即将开始DMA和中断控制器的测试。 . 5A . . 显示按“F2”键进行设置。 5B . . 测试基本内存地址。 5C . . 测试640K基本内存。 60 设置硬盘引导扇区病毒保护功能。 通过DMA页面寄存器的测试;即将检验视频存储器。 测试扩展内存。 61 显示系统配置表。 视频存储器检验结束;即将进行DMA#1基本寄存器的测试。 . 62 开始用中断19H进行系统引导。 通过DMA#1基本寄存器的测试;即将进行DMA#2寄存器的测试。 测试扩展内存地址线。 63 . 通过DMA#2基本寄存器的测试;即将检查BIOS ROM数据区。 . 64 . BIOS ROM数据区检查了一半,继续进行。 . 65 . BIOS ROM数据区检查结束;将把DMA装置1和2编程。 . 66 . DMA装置1和2编程结束;即将使用59号中断控制器作初始准备。 Cache注册表进行优化配置。 67 . 8259初始准备已结束;即将开始键盘测试。 . 68 . . 使外部Cache和CPU内部Cache都工作。 6A . . 测试并显示外部Cache值。 6C . . 显示被屏蔽内容。 6E . . 显示附属配置信息。 70 . . 检测到的错误代码送到屏幕显示。 72 . . 检测配置有否错误。 74 . . 测试实时时钟。 76 . . 扫查键盘错误。 7A . . 锁键盘。 7C . . 设置硬件中断矢量。 7E . . 测试有否安装数学处理器。 80 . 键盘测试开始,正在清除和检查有没有键卡住,即将使键盘复原。 关闭可编程输入/输出设备。 81 . 找出键盘复原的错误卡住的键;即将发出键盘控制端口的测试命令。 . 82 . 键盘控制器接口测试结束,即将写入命令字节和使循环缓冲器作初始准备。 检测和安装固定RS232接口(串口)。 83 . 已写入命令字节,已完成全局数据的初始准备;即将检查有没有键锁住。 . 84 . 已检查有没有锁住的键,即将检查存储器是否与CMOS失配。 检测和安装固定并行口。 85 . 已检查存储器的大小;即将显示软错误和口令或旁通安排。 . 86 . 已检查口令;即将进行旁通安排前的编程。 重新打开可编程I/O设备和检测固定I/O是否有冲突。 87 . 完成安排前的编程;将进行CMOS安排的编程。 . 88 . 从CMOS安排程序复原清除屏幕;即将进行后面的编程。 初始化BIOS数据区。 89 . 完成安排后的编程;即将显示通电屏幕信息。 . 8A . 显示头一个屏幕信息。 进行扩展BIOS数据区初始化。 8B . 显示了信息:即将屏蔽主要和视频BIOS。 . 8C . 成功地屏蔽主要和视频BIOS,将开始CMOS后的安排任选项的编程。 进行软驱控制器初始化。 8D . 已经安排任选项编程,接着检查滑了鼠和进行初始准备。 . 8E . 检测了滑鼠以及完成初始准备;即将把硬、软磁盘复位。 . 8F . 软磁盘已检查,该磁碟将作初始准备,随后配备软磁碟。 . 90 . 软磁碟配置结束;将测试硬磁碟的存在。 硬盘控制器进行初始化。 91 . 硬磁碟存在测试结束;随后配置硬磁碟。 局部总线硬盘控制器初始化。 92 . 硬磁碟配置完成;即将检查BIOS ROM的数据区。 跳转到用户路径2。 93 . BIOS ROM的数据区已检查一半;继续进行。 . 94 . BIOS ROM的数据区检查完毕,即调定基本和扩展存储器的大小。 关闭A-20地址线。 95 . 因应滑鼠和硬磁碟47型支持而调节好存储器的大小;即将检验显示存储器。 . 96 . 检验显示存储器后复原;即将进行C800:0任选ROM控制之前的初始准备。 “ES段”注册表清除。 97 . C800:0任选ROM控制之前的任何初始准备结束,接着进行任选ROM的检查及控制。 . 98 . 任选ROM的控制完成;即将进行任选ROM回复控

03

Flink1.12支持对接Atlas【使用Atlas收集Flink元数据】

问题导读 1.Atlas中实体具体指什么? 2.如何为Flink创建Atlas实体类型定义? 3.如何验证元数据收集? 在Cloudera Streaming Analytics中,可以将Flink与Apache Atlas一起使用,以跟踪Flink作业的输入和输出数据。 Atlas是沿袭和元数据管理解决方案,在Cloudera Data Platform上受支持。这意味着可以查找,组织和管理有关Flink应用程序以及它们如何相互关联的数据的不同资产。这实现了一系列数据管理和法规遵从性用例。 有关Atlas的更多信息,请参阅Cloudera Runtime文档。 Flink元数据集合中的Atlas实体 在Atlas中,表示Flink应用程序,Kafka主题,HBase表等的核心概念称为实体。需要了解Flink设置中实体的关系和定义,以增强元数据收集。 为Flink创建Atlas实体类型定义 在提交Flink作业以收集其元数据之前,需要为Flink创建Atlas实体类型定义。在命令行中,需要连接到Atlas服务器并添加预定义的类型定义。还需要在Cloudera Manager中为Flink启用Atlas。 验证元数据收集 启用Atlas元数据收集后,群集上新提交的Flink作业也将其元数据提交给Atlas。可以通过请求有关Atlas挂钩的信息来在命令行中使用消息验证元数据收集。 Flink元数据集合中的Atlas实体 在Atlas中,表示Flink应用程序,Kafka主题,HBase表等的核心概念称为实体。需要了解Flink设置中实体的关系和定义,以增强元数据收集。 在向Atlas提交更新时,Flink应用程序会描述自身以及用作源和接收器的实体。Atlas创建并更新相应的实体,并从收集到的和已经可用的实体创建沿袭。在内部,Flink客户端和Atlas服务器之间的通信是使用Kafka主题实现的。该解决方案被Atlas社区称为Flink挂钩。

02

OptaPlanner规划引擎的工作原理及简单示例(2)

在前面一篇关于规划引擎OptaPlanner的文章里(OptaPlanner规划引擎的工作原理及简单示例(1)),老农介绍了应用OptaPlanner过程中需要掌握的一些基本概念,这些概念有助于后面的内容的理解,特别是关于将约束应用于业务规则上的理解。承上一文,在本篇中将会减少一些理论,而是偏向于实践,但过程中,借助实际的场景对一些相关的理论作一些更细致的说明,也是必要的。本文将会假设我们需要对一个车间,需要制定生产计划.我们为生产计划员们设计一套智能的、自动的计划系统;并通过OptaPlanner把这个自动计划系统开发出来。当然,里面的业务都是经过高度抽象形成的,去除了复杂的业务规则,仅保留可以体现规划引擎作用的一些业务需求。因此,这次我们只用一个简单的小程序即可以演绎一个自动计划系统,来呈现规划引擎OptaPlanner在自动计划上的魅力。

01

机器学习三人行(系列七)----支持向量机实践指南(附代码)

其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出来,因为该数据集是线性可分的,左图是三种可能的分类方式,虚线基本没有办法将两种类别划分,另外

012

机器学习三人行-支持向量机实践指南

关注公众号“智能算法”即可一起学习整个系列的文章。 文末查看本文代码关键字,公众号回复关键字下载代码。 其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是从感知机发展而来,支持向量机是一个非常强大而且应用面很广的机器学习算法,能够胜任线性分类器,非线性分类器,线性回归问题,非线性回归问题中,甚至是离群值检测中,是应用最广泛的机器学习算法之一,本文剖析支持向量机在实践中的应用。 一、线性支持向量机 我们以一些图来解释支持向量机的基本原理,下图是对鸢尾花数据集分类,可以发现两种花能够很轻松的通过直线划分出

09
领券