首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

基于深度学习的语义分割技术总览

用卷积神经网络分类(全卷积网络FCN),与普通CNN网络不通的是,FCN的分类层是卷积层,普通网络为全连接层。方法介绍如下:  最近的语义分割架构一般都用卷积神经网络(CNN)为每个像素分配一个初始类别标签。卷积层可以有效地捕捉图像中的局部特征,并以层级的方式将许多这样的模块嵌套在一起,这样 CNN 就可以试着提取更大的结构了。通过一系列卷积捕捉图像的复杂特征,CNN 可以将一张图的内容编码为紧凑表征。  但为了将单独的像素映射给标签,我们需要将标准 CNN 编码器扩展为编码器-解码器架构。在这个架构中,编码器使用卷积层和池化层将特征图尺寸缩小,使其成为更低维的表征。解码器接收到这一表征,用通过转置卷积执行上采样而「恢复」空间维度,这样每一个转置卷积都能扩展特征图尺寸。在某些情况下,编码器的中间步骤可用于调优解码器。最终,解码器生成一个表示原始图像标签的数组。

02

农林业遥感图像分类研究[通俗易懂]

遥感图像处理是数字图像处理技术中的一个重要组成部分,长期以来被广泛应用于农林业的遥感测绘,防灾减灾等领域。本文旨在通过深度学习技术从遥感影像中分类出农田和林业地块。手工从遥感图像中分类出农田和林业区域分类虽然准确但是效率低下,并且很多采用传统图像分割技术的方法泛化性能差,不适合场景复杂的遥感图像。经实践证明,使用深度学习技术在各种计算机视觉任务中都取得了良好的效果,因此本文首先使用先进的深度学习框架进行分类实验,例如使用PSPNet,UNet等作为分割网络对遥感图像数据集进行分类与分割训练。这些框架在ImageNet,COCO,VOC等数据集上表现很好,但是由于遥感图像数据集相对于ImageNet,COCO等数据集,不仅检测对象相对较小而且可供学习的数据集样本较少,需要针对这一特点进行优化。本文经过多次实验将高分辨率的图像切割成合适大小分辨率的图像以减小神经网络的输入,同时进行图片的预处理和数据增强来丰富学习样本。同时在真实情况下,农林区域易受到拍摄视角,光照等造成分割对象重叠,因此本文提出一种处理分割对象重叠的处理策略,来优化边界预测不准确的情况,使用该方法后准确率有明显提升。经实验证明,本文所提出的基于深度学习的农林业遥感影像分割在开源遥感图像数据集上的取得了94.08%的准确率,具有较高的研究价值 农林业遥感图像数据(图1)对于许多与农林业相关的应用至关重要。例如作物类型和产量监测,防灾减灾以及对粮食安全工作的研究和决策支持。最初,这些数据主要由政府机构使用。如今,蓬勃发展的农林业技术也需要在农场管理,产量预测和林业规划等各种应用领域进行革新。以往农林业地块的高质量遥感图像数据主要是手动在高分辨率图像中分割出来的,即通过土地功能不同引起的颜色,亮度或纹理的差异与周围区域 亮度或纹理的差异与周围区域区分开来。尽管农林业遥感图像的手动分类可以非常准确,但是非常耗时耗力。 图1.1:农田的遥感图像分割 定期更新农林业遥感图像数据的需求日益增加扩大了自动化分割农林业遥感图像的需求。 与ImageNet、VOC2007、COCO等目标检测/分类数据集中的大多数图像相比,农林业遥感图像中的对象相对简单。例如,人体的图像数据看起来要复杂得多,因为它包含各种不同纹理和形状的子对象(面部,手部,衣服等)。因此,优化传统的图像分割以及深度学习技术来设计用于农林业遥感图像分割的算法是非常重要的。该模型需要正确地排除不需要进行分割的对象(房屋,工厂,停车场等),区分具有几乎相似的光谱特性的相邻区域和可见度差的边界区域,并且正确地分割出所需的对象。 1.2 选题来源与经费支持 本研究课题来源于计算机与信息工程学院 随着传感器技术,航空航天技术,图像处理技术快速的发展,利用卫星遥感图像进行深度学习处理广泛应用于生产实际中。由于农林业遥感图像场景复杂,使用传统图像处理分割算法效果差且泛化性能弱,本文使用深度学习方法,在现有的的深度学习模型上训练,优化,最终提出一种一种优化后的深度学习模型,经测试,该模型在收集的农林业遥感图像数据集上可以准确的分割出所需的对象,本文提出的模型主要解决如下几个难点:

02

关于CNN图像分类的一份综合设计指南

对于计算机视觉任务而言,图像分类是其中的主要任务之一,比如图像识别、目标检测等,这些任务都涉及到图像分类。而卷积神经网络(CNN)是计算机视觉任务中应用最为广泛且最为成功的网络之一。大多数深度学习研究者首先从CNN入门,上手的第一个项目应该是手写体MNIST数字图像识别,通过该项目能够大致掌握图像分类的基本操作流程,但由于该项目太成熟,按步骤操作一遍可能只知其然而不知其所以然。所以,当遇到其它图像分类任务时,研究者可能不知道如何开始,或者不知道选取怎样的预训练网络模型、或者不知道对已有的成熟模型进行怎样的调整、模型的层数怎样设计、如何提升精度等,这些问题都是会在选择使用卷积神经模型完成图像分类任务时应该考虑的问题。 当选择使用CNN进行图像分类任务时,需要优化3个主要指标:精度、仿真速度以及内存消耗。这些性能指标与设计的模型息息相关。不同的网络会对这些性能指标进行权衡,比如VGG、Inception以及ResNets等。常见的做法是对这些成熟的模型框架进行微调、比如通过增删一些层、使用扩展的其它层以及一些不同的网络训练技巧等完成相应的图像分类任务。 本文是关于使用CNN进行图像分类任务的优化设计指南,方便读者快速掌握图像分类模型设计中所遇到的问题及经验。全文集中在精度、速度和内存消耗这三个性能指标进行扩展,介绍不同的CNN分类方法,并探讨这些方法在这三个性能指标上的表现。此外,还可以看到对这些成熟的CNN方法进行各种修改以及修改后的性能表现。最后,将学习如何针对特定的图像分类任务优化设计一个CNN网络模型。

03

在线手写识别的多卷积神经网络方法

本文所描述的研究主要关注在线手写体识别系统中的单词识别技术。该在线手写体识别系统使用多组件神经网络(multiple component neural networks, MCNN)作为分类器的可交换部分。作为一种新近的方法,该系统通过将手写文字分割成可单独识别的小片段(通常是字符)来进行识别。于是,识别结果便是每个已识别部分的组合。然后将这些组合词发送给单词识别模块作为输入,以便用一些字典搜索算法来从里面选择最好的一个。所提出的分类器克服了传统的分类器对大量字符类别进行分类时的障碍和困难。此外,所提出的分类器还具有可扩展的能力,可以通过添加或更改组件网络和内置字典的方法来动态地识别另外的字符类别。

07

将卷积神经网络视作泛函拟合

我们知道一般的神经网络几乎能够拟合任意有界函数,万能逼近定理告诉我们如果函数的定义域和值域都是有界的,那么一定存在一个三层神经网络几乎处处逼近,这是普通的nn。但是如果我们回到卷积神经网络,我们会发现我们的输入是一个有界信号(准确的说是满足一定分布的一族有界信号),输出也是一个有界信号,我们需要拟合的是函数族到函数族的一个变换,即存在有界函数和有界函数,其中 本身也是有界的,我们需要的是一个变换 ,这其实是一个泛函,也就是函数的函数,(如果我们把所有分辨率的32x32图像信号当成一族函数(另外,如果使用0延拓或者随机延拓,这个函数可以被当成定义在全空间上的函数),那么边缘提取正是一阶微分算子,它就是一个泛函,在图像中,它几乎是最重要的泛函,它的离散形式是sobel算子,它作用在图像上,得到边缘响应,这也是一族有界函数,响应经过限制后依然有界),

02

Mask-RCNN论文解读

Mask R-CNN是基于Faster R-CNN的基于上演进改良而来,FasterR-CNN并不是为了输入输出之间进行像素对齐的目标而设计的,为了弥补这个不足,我们提出了一个简洁非量化的层,名叫RoIAlign,RoIAlign可以保留大致的空间位置,除了这个改进之外,RoIAlign还有一个重大的影响:那就是它能够相对提高10%到50%的掩码精确度(Mask Accuracy),这种改进可以在更严格的定位度量指标下得到更好的度量结果。第二,我们发现分割掩码和类别预测很重要:为此,我们为每个类别分别预测了一个二元掩码。基于以上的改进,我们最后的模型Mask R-CNN的表现超过了之前所有COCO实例分割任务的单个模型,本模型可以在GPU的框架上以200ms的速度运行,在COCO的8-GPU机器上训练需要1到2天的时间。

05
领券