首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

麻省理工 HAN Lab 提出 ProxylessNAS 自动为目标任务和硬件定制高效 CNN 结构

摘要:NAS 受限于其过高的计算资源 (GPU 时间, GPU 内存) 需求,仍然无法在大规模任务 (例如 ImageNet) 上直接进行神经网络结构学习。目前一个普遍的做法是在一个小型的 Proxy 任务上进行网络结构的学习,然后再迁移到目标任务上。这样的 Proxy 包括: (i) 训练极少量轮数; (ii) 在较小的网络下学习一个结构单元 (block),然后通过重复堆叠同样的 block 构建一个大的网络; (iii) 在小数据集 (例如 CIFAR) 上进行搜索。然而,这些在 Proxy 上优化的网络结构在目标任务上并不是最优的。在本文中,我们提出了 ProxylessNAS,第一个在没有任何 Proxy 的情况下直接在 ImageNet 量级的大规模数据集上搜索大设计空间的的 NAS 算法,并首次专门为硬件定制 CNN 架构。我们将模型压缩 (减枝,量化) 的思想与 NAS 进行结合,把 NAS 的计算成本 (GPU 时间, GPU 内存) 降低到与常规训练相同规模,同时保留了丰富的搜索空间,并将神经网络结构的硬件性能 (延时,能耗) 也直接纳入到优化目标中。我们在 CIFAR-10 和 ImageNet 的实验验证了」直接搜索」和「为硬件定制」的有效性。在 CIFAR-10 上,我们的模型仅用 5.7M 参数就达到了 2.08% 的测试误差。对比之前的最优模型 AmoebaNet-B,ProxylessNAS 仅用了六分之一的参数量就达到了更好的结果。在 ImageNet 上,ProxylessNAS 比 MobilenetV2 高了 3.1% 的 Top-1 正确率,并且在 GPU 上比 MobilenetV2 快了 20%。在同等的 top-1 准确率下 (74.5% 以上), ProxylessNAS 的手机实测速度是当今业界标准 MobileNetV2 的 1.8 倍。在用 ProxylessNAS 来为不同硬件定制神经网络结构的同时,我们发现各个平台上搜索到的神经网络在结构上有很大不同。这些发现为之后设计高效 CNN 结构提供新的思路。

05

谷歌开源新模型EfficientNet,或成计算机视觉任务新基础

开发一个卷积神经网络(CNN)的成本通常是固定的。在获得更多资源时,我们通常会按比例进行扩展,以便获得更优的准确性。例如,ResNet可以通过增加层数从ResNet-18扩展到ResNet-200,最近,GPipe 网络通过将基准 CNN 模型扩展四倍,在 ImageNet Top-1 上获得了 84.3% 的准确度。在模型扩展方面的操作通常是任意增加 CNN 的深度或宽度,或者在更大输入图像分辨率上进行训练和评估。虽然这些方法确实提高模型了准确性,但它们通常需要繁琐的手工调整,而且还不一定能找到最优的结构。换言之,我们是否能找到一种扩展设计方法来获得更好的准确性和效率呢?

01

CVPR 2020 | 一种频域深度学习

深度神经网络在计算机视觉任务中取得了显著的成功。对于输入图片,现有的神经网络主要在空间域中操作,具有固定的输入尺寸。然而在实际应用中,图像通常很大,必须被降采样到神经网络的预定输入尺寸。尽管降采样操作可以减少计算量和所需的通信带宽,但它会无意识地移除冗余和非冗余信息,导致准确性下降。受数字信号处理理论的启发,我们从频率的角度分析了频谱偏差,并提出了一种可学习的频率选择方法,可以在不损失准确性的情况下移除次相关的频率分量。在下游任务中,我们的模型采用与经典神经网络(如ResNet-50、MobileNetV2和Mask R-CNN)相同的结构,但接受频域信息作为输入。实验结果表明,与传统的空间降采样方法相比,基于静态通道选择的频域学习方法可以实现更高的准确性,同时能够减少输入数据的大小。具体而言,在相同的输入尺寸下,所提出的方法在ResNet-50和MobileNetV2上分别实现了1.60%和0.63%的top-1准确率提升。当输入尺寸减半时,所提出的方法仍然将ResNet-50的top-1准确率提高了1.42%。此外,我们观察到在COCO数据集上的分割任务中,Mask R-CNN的平均精度提高了0.8%。

04

APQ:联合搜索网络架构、剪枝和量化策略

本文提出APQ,以便在资源受限的硬件上进行有效的深度学习推理。与以前分别搜索神经体系结构,修剪策略和量化策略的方法不同,本文以联合方式优化它们。为了应对它带来的更大的设计空间问题,一种有前途的方法是训练量化感知的准确性预测器,以快速获得量化模型的准确性,并将其提供给搜索引擎以选择最佳拟合。但是,训练此量化感知精度预测器需要收集大量量化的<model,precision>对,这涉及量化感知的微调,因此非常耗时。为了解决这一挑战,本文建议将知识从全精度(即fp32)精度预测器转移到量化感知(即int8)精度预测器,这将大大提高采样效率。此外,为fp32精度预测器收集数据集只需要通过从预训练的 once-for-all 网络中采样就可以评估神经网络,而无需任何训练成本。ImageNet 上的大量实验证明了联合优化方法的好处。与MobileNetV2 + HAQ 相比,APQ 以相同的精度将延迟降低2倍,能耗降低1.3倍。与单独的优化方法(ProxylessNAS + AMC + HAQ )相比,APQ可提高ImageNet精度2.3%,同时减少GPU数量级和CO2排放量,从而推动了绿色AI在环保方面的前沿。

03
领券