首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型

前言 有一期的恶意文件检测模型训练好了,因此需要进行测试,关于恶意文件检测的内容,可以回看博主之前写的博文: 【AI】浅析恶意文件静态检测及部分问题解决思路 【AI】恶意文件静态检测模型检验及小结 因为样本在某台机子上...,又恰逢有其他模型在训练,因此 GPU 资源被占满了,不过测试这个模型的话,CPU 也绰绰有余了,当我准备使用 CPU 训练时,却遇到了问题; 分析 1、model.to(device) 不会影响 torch.load...上训练的模型,保存时会在参数名前多加了一个 module.....` state_dict_new[name] = v model.load_state_dict(state_dict_new) 这样就能够在 CPU 上加载多 GPU 训练的模型了...后记 以上就是 【问题解决】解决如何在 CPU 上加载多 GPU 训练的模型 的全部内容了,希望对大家有所帮助!

60651

图形显卡与专业GPU在模型训练中的差异分析

其中,H100等专业级GPU因其强大的计算能力和专为模型训练优化的架构而备受瞩目。然而,这些专业级GPU的价格通常非常高昂。...与此同时,市面上也有大量图形显卡,如GTX系列和RTX系列,这些显卡在参数上看似与专业级GPU相差不大,但价格却相差巨大。那么,在模型训练方面,图形显卡和专业级GPU到底有哪些差异呢?...软件支持 图形显卡 驱动和库:通常只支持基础的CUDA和cuDNN库。 优化:缺乏针对模型训练的软件优化。 专业级GPU 驱动和库:全面支持CUDA、cuDNN以及其他深度学习库。...优化:专门针对模型训练进行了软件层面的优化。 成本 图形显卡通常价格更低,但在模型训练方面,其性价比通常不如专业级GPU。...总结 虽然图形显卡在价格上具有明显优势,但在模型训练方面,专业级GPU由于其强大的计算能力、优化的软件支持和专为大规模数据处理设计的硬件架构,通常能提供更高的性能和效率。

64120
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在 PyTorch 中使用梯度检查点在GPU 上训练更大的模型

    来源:Deephub Imba 本文约3200字,建议阅读7分钟 本文将介绍解梯度检查点(Gradient Checkpointing),这是一种可以让你以增加训练时间为代价在 GPU 中训练大模型的技术...我们将在 PyTorch 中实现它并训练分类器模型。 作为机器学习从业者,我们经常会遇到这样的情况,想要训练一个比较大的模型,而 GPU 却因为内存不足而无法训练它。...当我们在出于安全原因不允许在云计算的环境中工作时,这个问题经常会出现。在这样的环境中,我们无法足够快地扩展或切换到功能强大的硬件并训练模型。...梯度检查点通过在需要时重新计算这些值和丢弃在进一步计算中不需要的先前值来节省内存。 让我们用下面的虚拟图来解释。 上面是一个计算图,每个叶节点上的数字相加得到最终输出。...记录模型的不同指标,如训练所用的时间、内存消耗、准确性等。 由于我们主要关注GPU的内存消耗,所以在训练时需要检测每批的内存消耗。

    92720

    业界 | 怎么把 GPU 上训练的模型转到 TPU 或者 CPU 上去?DeepMind 发布新工具支招

    在 AlphaFold、BigGAN、AlphaStar 等近期的人工智能科研成果中,我们很容易看到一个反复出现的要素,那就是对轻松增加模型和计算能力规模的渴求。...在越来越高的计算能力上训练越来越大的模型,让神经网站展现出了惊人的表现。...TensorFlow 固然对 CPU、GPU、TPU 都提供了直接的支持,但是用户想要切换模型运行在哪个设备上却是一件很麻烦的事情。...在训练机器学习模型的情境中,最常见的沟通形式就是为随机梯度下降 SGD 之类的优化算法累积计算梯度。...比如 BigGAN 模型就是在最高达到 512 个 TPUv3 核心组成的集群上,以 2048 的批量大小进行训练的。

    1.1K30

    业界 | 怎么把 GPU 上训练的模型转到 TPU 或者 CPU 上去?DeepMind 发布新工具支招

    在 AlphaFold、BigGAN、AlphaStar 等近期的人工智能科研成果中,我们很容易看到一个反复出现的要素,那就是对轻松增加模型和计算能力规模的渴求。...在越来越高的计算能力上训练越来越大的模型,让神经网站展现出了惊人的表现。...TensorFlow 固然对 CPU、GPU、TPU 都提供了直接的支持,但是用户想要切换模型运行在哪个设备上却是一件很麻烦的事情。...在训练机器学习模型的情境中,最常见的沟通形式就是为随机梯度下降 SGD 之类的优化算法累积计算梯度。...比如 BigGAN 模型就是在最高达到 512 个 TPUv3 核心组成的集群上,以 2048 的批量大小进行训练的。

    71530

    MacBook显卡不跑AI模型太浪费:这个深度学习工具支持所有品牌GPU

    由于图形处理和深度学习在本质上的相似性,GPU 就成为了深度学习和并行计算的首选。 除了 CUDA 就没得选了吗?...之后 PlaidML 0.3.3 发布,开发者可以借助 Keras 在自己的 AMD 和英特尔 GPU 上完成并行深度学习任务。...我们训练的卷积神经网络模型在时尚分类任务上达到了 91% 的准确率,训练只用了 2 分钟!这个数字可能看起来并不惊艳,但想想 CPU 训练要多久吧: ?...从以上结论中我们可以看到,借助 Macbook Pro 搭载的 GPU 进行深度学习计算要比简单地用 CPU 快 15 倍。通过 PlaidML,使用自己的笔记本电脑训练深度学习模型将变得更加简单。...在 PlaidML 的 GitHub 页面上你能看到更多的 demo 和相关项目,相信随着这一工具的不断发展,它可以支持的算法也会越来越多。我们在自己的笔记本上,也能快速试验个小模型。

    2.7K20

    Microsoft AI 开源“PyTorch-DirectML”:在 GPU 上训练机器学习模型的软件包

    微软Windows团队的AI已经公布了˚F IRST DirectML的预览作为后端PyTorch训练ML车型。...此版本允许在任何 DirectX12 GPU 和 WSL 上加速 PyTorch 的机器学习训练,释放混合现实计算的新潜力。...在这个名为“DML”的新设备中,通过在调用运算符时引入最少的开销来调用直接 ML API 和 Tensor 原语;它们的工作方式与其他现有后端非常相似。...PyTorch-DirectML 套件可以使用 GPU 机器学习库 DirectML 作为其后端,允许在 DirectX12 GPU 和 WSL(适用于 Linux 的 Windows 子系统)上训练模型...Microsoft 与 AMD、Intel 和 NVIDIA 合作,为 PyTorch 提供这种硬件加速的训练体验。PyTorch-DirectML 包安装简单,只需更改现有脚本中的一行代码。

    4.3K20

    防止在训练模型时信息丢失 用于TensorFlow、Keras和PyTorch的检查点教程

    机器学习和深度学习实验中的检查点本质上是一样的,它们都是一种保存你实验状态的方法,这样你就可以从你离开的地方开始继续学习。 ?...Keras文档为检查点提供了一个很好的解释: 模型的体系结构,允许你重新创建模型 模型的权重 训练配置(损失、优化器、epochs和其他元信息) 优化器的状态,允许在你离开的地方恢复训练 同样,一个检查点包含了保存当前实验状态所需的信息...长期训练制度 在这种类型的训练体系中,你可能希望采用与常规机制类似的策略:在每一个n_epochs中,你都可以节省多个检查点,并在你所关心的验证度量上保持最佳状态。...让我们来看看当我们对这两个参数进行操作时发生了什么: ? 在FloydHub中保存和恢复 现在,让我们研究FloydHub上的一些代码。...(在Python3.0.6上的Tensorflow 1.3.0 + Keras 2.0.6) –data标记指定pytorch-mnist数据集应该在/inputdirectory中可以使用 –gpu标记实际上是可选的

    3.2K51

    独家 | 教你使用Keras on Google Colab(免费GPU)微调深度神经网络

    本文将指导您如何使用Google上的Keras微调VGG-16网络。 简介 在CPU上训练深度神经网络很困难。...如果您是Google Colab的新手,这是适合您的地方,您将了解到: 如何在Colab上创建您的第一个Jupyter笔记本并使用免费的GPU。 如何在Colab上上传和使用自定义数据集。...您已经在Colab上创建了您的第一个笔记本? 2. 为笔记本设置GPU加速器 在笔记本中,选择Runtime > Change runtime type。将弹出一个窗口。...然后选择您的运行时间类型,从硬件加速器下拉菜单中选择GPU并保存您的设置,如下图所示: ? 3. 将您的自定义数据集上传到Colab 您已将笔记本设置为在GPU上运行。...不使用GPU进行训练 现在,让我们使用ColabGPU在测试集上测试模型(您可以运行!ls */test/*以查看具有相应基础事实的测试帧)。 好棒!!!

    3.4K10

    教程 | 从硬件配置、软件安装到基准测试,1700美元深度学习机器构建指南

    这能让我在两个芯片上训练一个模型,或同时训练两个模型。...目前在多个芯片上训练一个模型还有点麻烦,不过现在有所转机,因为 PyTorch 和 Caffe 2 提供了随着 GPU 数量几乎成线性提升的训练规模。...更多的存储空间能让我们部署更大的模型,并且在训练时使用足够大的批量大小(这会对梯度流很有帮助)。 存储带宽:这能让 GPU 在更大的内存上运行。...我们运行 Keras 中的多层感知机 (MLP) 来处理 MNIST 数据库。多次感知机只需全连接层而不用卷积。该模型将数据训练了 20 个 epoch 之后,准确率达到了 98%。 ?...在 GPU 上运行相同批次(batches)数量的模型不太可行。所以我们在 GPU 上运行 390 批次(1 epoch),在 CPU 上运行 10 个批次。

    1.2K50

    WebDNN:浏览器上运行的最快DNN执行框架(Macbook也行)

    因此,它需要一定的计算开销,也无法完全发挥CPU的性能;在GPU上,也有同样的问题。 现在的浏览器都支持WebGL,一种能够实现GPU使用的JavaScript API。...WebDNN使用了新一代的JavaScript API——包括用于GPU执行的WebGPU,以及用于CPU执行的WebAssembly。这些API能够帮助充分发挥GPU和CPU的能力。...针对推理阶段的专门优化 为了实现更快的执行过程,对DNN模型的计算图进行优化非常重要。DNN的执行包括两个阶段:训练阶段和推理阶段,并且它们需要不同的优化策略。...上的一个开源项目,在GPU的支持下,能够用于在浏览器上运行Keras模型。)...△ 可能训练得不太好,海豚识别成了大白鲨…… 以上两个示例,其预训练模型的执行都是通过WebDNN在浏览器上完成的。

    1.1K60

    Colab提供了免费TPU,机器之心帮你试了试

    但我们不太了解 Colab 中的 GPU 和 TPU 在深度模型中的表现如何,当然后面会用具体的任务去测试,不过现在我们可以先用相同的运算试试它们的效果。...根据文档所示,TPUEstimator 类继承自 Estimator 类,因此它不仅支持在 TPU 上运算,同时还支持 CPU 和 GPU 的运算。...这个模型是基于 Keras 构建的,因为除了模型转换与编译,Keras 模型在 TPU 和 GPU 的训练代码都是一样的,且用 Keras 模型做展示也非常简洁。...注意两个模型的超参数,如学习率、批量大小和 Epoch 数量等都设置为相同的数值,且损失函数和最优化器等也采用相同的方法。...GPU 训练模型时,我们会删除模型转换步骤,并保留相同的编译和拟合部分。

    2.3K30

    使用单GPU训练模型

    深度学习的训练过程常常非常耗时,一个模型训练几个小时是家常便饭,训练几天也是常有的事情,有时候甚至要训练几十天。 训练过程的耗时主要来自于两个部分,一部分来自数据准备,另一部分来自参数迭代。...GPU和使用TPU训练模型的方法。...〇,GPU配置 无论是内置fit方法,还是自定义训练循环,从CPU切换成单GPU训练模型都是非常方便的,无需更改任何代码。...但如果是在公司或者学校实验室的服务器环境,存在多个GPU和多个使用者时,为了不让单个同学的任务占用全部GPU资源导致其他同学无法使用(tensorflow默认获取全部GPU的全部内存资源权限,但实际上只使用一个...在Colab笔记本中:修改->笔记本设置->硬件加速器 中选择 GPU 注:以下代码只能在Colab 上才能正确执行。

    1.1K10

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...Jupyter notebook Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下: ?...可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...我这里用了一个PyTorch实现,代码地址: https://github.com/martinarjovsky/WassersteinGAN 这个模型需要50步训练,CPU在这个训练中不予考虑。

    1.1K41

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...Jupyter notebook Jupyter是一个交互式的笔记本,随着Anaconda安装,我们要配置和测试一下: ?...可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...我这里用了一个PyTorch实现,代码地址: https://github.com/martinarjovsky/WassersteinGAN 这个模型需要50步训练,CPU在这个训练中不予考虑。

    1.2K50

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...,安装: 为了检查一下TensorFlow安装好没有,可以运行MNIST看看: 应该能在训练过程中,看到loss的逐渐减少: Keras 一个高级神经网络框架,安装非常简单: PyTorch 深度学习框架届的新兵...可以看到在训练这个模型时,GTX 1080 Ti比AWS P2 K80快2.4倍,这有点惊人,因为两个显卡的性能应该差不多,我觉得可能是AWS上有降频或者受到虚拟化的影响。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...我这里用了一个PyTorch实现,代码地址: https://github.com/martinarjovsky/WassersteinGAN 这个模型需要50步训练,CPU在这个训练中不予考虑。

    1.1K60

    开源 | 浏览器上最快的DNN执行框架WebDNN:从基本特性到性能测评

    这些 API 可以帮助 GPU 和 CPU 发挥出其全部性能。 针对推理阶段的专门优化 为实现更快速的执行速度,优化 DNN 模型的计算图(graph)就显得非常重要。...DNN 的执行由两阶段组成:训练阶段和推理阶段。这两个阶段分别需要不同的优化方法。WebDNN 仅专注于终端用户设备上推理阶段的执行,并且它支持复杂的优化。...图形转译器能转译和优化模型使其成为在浏览器中可执行的格式,而描述符运行器则在浏览器中执行并转换模型。...而带有 WebAssembly 后端的 WebDNN 和带有 GPU 后端的 Keras.js 效果相仿。在每一个 DNN 模型和后端中,WebDNN 在速度方面都获得更好的结果。...并且当在图形转译器(graph transpiler)应用最优化时,其还能获得更大的加速。 快速运行对比 现在让我们在浏览器上转换并执行 ResNet50 预训练 Keras 模型。

    1.1K60

    干货|多重预训练视觉模型的迁移学习

    本文我们展示了基于预训练计算机视觉模型的迁移学习的用途,并使用了keras TensorFlow抽象库。...其他层在新任务上像以前一样进行训练。 3.特征提取(Feature extraction):这种方法是预训练网络最宽松的一种用法。...当解压数据集时创建了“CUB_200_2011”文件夹,常量CUB_DIR指向该文件夹中的“image”目录。 ? 首先,我们将用Resnet50模型(参见论文和keras文件)进行特征提取。...在接下来的部分中,我们将使用几个预先训练好的模型和一个叠加方法来继续改进这个结果。...[1]深度学习模型通常是在GPU上训练,如果您使用的是低端笔记本GPU,可能不适合运行我们这里使用的一些模型,因为会导致内存溢出异常,如果是这样,那么您应该强制TensorFlow运行CPU上的所有内容

    1.8K70
    领券