这些神经网络模型解释了许多解剖学和生理学观察; 然而, 这些目 标的计算能力有限, 并且派生的 NN 无法解释在整个大脑中普遍存在的多隔室神经元结构和非赫布形式的可塑性。...在本文中, 我们回顾并统一了相似性匹配方法的最新扩展, 以解决更复杂的目 标, 包括范围广泛的无监督和自 监督学习任务, 这些任务可以表述为广义特征值问题或非负矩阵分解问题。...开发了一个基于相似性匹配目 标[10‐14] 的规范框架, 它最小化了 NN 输入的相似性和 NN 输出的相似性之间的差异。...在这种方法的开创性示例中, Oja [4]提出了一种在线算法来求解主成分分析 (PCA) 目 标, 该算法可以在具有 Hebb 可塑性的单个神经元中实现。...在最近的一系列工作中[25‐29], 我们扩展了相似性匹配框架工作以包括更复杂的学习任务的目 标。