首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

懂Excel轻松入门Python数据分析包pandas(二十三):环比

这一节先讲解最简单的环比实现。 下一节,将利用此技巧,解决诸如"某城市一年最大连续没下雨天数"的问题。敬请关注!...pandas 中的数据位移 直接看看,pandas 中把销量列位移是怎么实现的: - 行2:.shift() 方法实现下位移。...不过,实际工作中的数据没有这么简单, 比如说: - 数据中有些月份数据是缺失的,怎么办? - 数据中的是日期类型,我希望按年做环比 更多详细高级应用技巧,关注我的 pandas 专栏!...多结合分组处理 实际情况是,我们拿到的数据是多个城市的月份销量: 此时我们需要注意2点: - 按城市分组 - 保证每个城市内的数据是按月份排序 代码如下: - 行3-5:每个分组的处理逻辑,内容很简单...- 行7:先按 城市、月份 做排序,接着分组 - 注意,你也可以在分组处理中对月份排序 总结

94520

懂Excel轻松入门Python数据分析包pandas(二十三):环比

这一节先讲解最简单的环比实现。 下一节,将利用此技巧,解决诸如"某城市一年最大连续没下雨天数"的问题。敬请关注!...pandas 中的数据位移 直接看看,pandas 中把销量列位移是怎么实现的: - 行2:.shift() 方法实现下位移。...不过,实际工作中的数据没有这么简单, 比如说: - 数据中有些月份数据是缺失的,怎么办? - 数据中的是日期类型,我希望按年做环比 更多详细高级应用技巧,关注我的 pandas 专栏!...多结合分组处理 实际情况是,我们拿到的数据是多个城市的月份销量: 此时我们需要注意2点: - 按城市分组 - 保证每个城市内的数据是按月份排序 代码如下: - 行3-5:每个分组的处理逻辑,内容很简单...- 行7:先按 城市、月份 做排序,接着分组 - 注意,你也可以在分组处理中对月份排序 总结 本文重点: - Series.shift 方法,实现数据位移 - 位移技巧结合其他技巧,能做到很多难以想象的功能

81920
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 秘籍:6~11

    目标是保留所有州中总体上占少数的所有行。 这要求我们按状态对数据进行分组,这是在步骤 1 中完成的。我们发现有 59 个独立的组。 filter分组方法将所有行保留在一个组中或将其过滤掉。...() 另见 请参阅第 4 章,“选择数据子集”中的“同时选择数据帧的行和列”秘籍 Pandas unstack和pivot方法的官方文档 在groupby聚合后解除堆叠 按单个列对数据进行分组并在单个列上执行聚合将返回简单易用的结果...前面的数据帧的一个问题是无法识别每一行的年份。concat函数允许使用keys参数标记每个结果数据帧。 该标签将显示在级联框架的最外层索引级别中,并强制创建多重索引。...一旦创建了引擎,就可以使用步骤 2 中的read_sql_table函数将整个表选择到数据帧中非常容易。数据库中的每个表都有一个主键,该主键唯一地标识每一行。 在图中用图形符号标识它。...resample方法允许您按一段时间分组并分别汇总特定的列。 准备 在本秘籍中,我们将使用resample方法对一年中的每个季度进行分组,然后分别汇总犯罪和交通事故的数量。

    34K10

    懂Excel轻松入门Python数据分析包pandas(二十四):连续区域

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节已经介绍了最简单的 shift 方法应用,这一节将结合其他技巧,解决诸如"某城市一年最大连续没下雨天数...Excel 中的实现方式直观简单 如下一份简单的记录表: - 需要根据这份数据,得到最长连续下雨天数是多少,是几号到几号 - 上图红框是一部分符合条件的,其中最长的红框是需要的结果 按照惯例,先看看如果在...分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现 现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单...= df.下雨) 相当于 Excel 操作中的 E列 - .cumsum() 相当于 Excel 操作中的 G列 接下来是分组统计,pandas 的分组其实不需要把辅助列加到 DataFrame 上的...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行

    1.3K30

    懂Excel轻松入门Python数据分析包pandas(二十四):连续区域

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节已经介绍了最简单的 shift 方法应用,这一节将结合其他技巧,解决诸如"某城市一年最大连续没下雨天数...Excel 中的实现方式直观简单 如下一份简单的记录表: - 需要根据这份数据,得到最长连续下雨天数是多少,是几号到几号 - 上图红框是一部分符合条件的,其中最长的红框是需要的结果 按照惯例,先看看如果在...分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现 现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单...= df.下雨) 相当于 Excel 操作中的 E列 - .cumsum() 相当于 Excel 操作中的 G列 接下来是分组统计,pandas 的分组其实不需要把辅助列加到 DataFrame 上的...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行

    1.1K30

    Pandas

    Pandas是专门用于数据挖掘的开源python库,也可用于数据分析。Pandas以Numpy为基础,借力Numpy模块在计算方面性能高的优势;同时基于matplotlib,能够简便的画图。...在Pandas版本0.20.0之前使用Panel结构存储三维数组。它有很大的缺点,比如生成的对象无法直接看到数据,如果需要看到数据,需要进行索引。...# major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。 # minor_axis - axis 2,它是每个数据帧(DataFrame)的列。..., value=np.nan) 7.高级处理-数据离散化 7.1为什么要离散化? 答:连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。...离散化方法经常作为数据挖掘的工具。 7.2什么是数据的离散化? 答:连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。

    5K40

    面试篇:快手数据研发面试题

    01-04 102,2021-01-05 102,2021-01-06 102,2021-01-07 102,2021-01-08 表中一行数据代表该用户在该日期登陆过,求每一位用户连续登陆天数最大分别是多少天...解题思路: 需要造一列数据,这个列日期连续的行值相同。 1)使用用户id分组,日期排序,增加升序排序列。...2)由于按照日期排序,如果列连续,使用日期减去排序列序号,则连续列的值相同,非连续列值不相同,这样可以达到造列的目的。...该矩阵具有如下特性: 每行中的整数从左到右按升序排列。 每行的第一个整数大于前一行的最后一个整数。...示例: 输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3 输出:true 思路: LeetCode第74题,将矩阵每一行拼接在上一行的末尾

    1K20

    数据科学的原理与技巧 三、处理表格数据

    三、处理表格数据 原文:DS-100/textbook/notebooks/ch03 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 索引、切片和排序 起步 在本章的每一节中...通常,一系列复杂的步骤会告诉你,可能有更简单的方式来表达你想要的东西。例如,如果我们没有立即意识到需要分组,我们可能会编写如下步骤: 遍历每个特定的年份。 对于每一年,遍历每个特定的性别。...× 2 列 总结 我们现在有了数据集中每个性别和年份的最受欢迎的婴儿名称,并学会了在pandas中表达以下操作: 操作 pandas 分组 df.groupby(label) 多列分组 df.groupby...我们现在可以将最后一个字母的这一列添加到我们的婴儿数据帧中。...通过在pandas文档中查看绘图,我们了解到pandas将DataFrame的一行中的列绘制为一组条形,并将每列显示为不同颜色的条形。 这意味着letter_dist表的透视版本将具有正确的格式。

    4.6K10

    Pandas 秘籍:1~5

    对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。...传递给每个方法的参数指定方法的操作方式。 尽管可以在单个连续的行中写入整个方法链,但更可取的是在每行中写入一个方法。...准备 以下是排序列的简单指南: 将每列分为离散列或连续列 在离散列和连续列中将公共列分组 将最重要的列组首先放置在分类列之前,然后再放置连续列 本秘籍向您展示如何使用此指南排序各列。...在 Pandas 中,这几乎总是一个数据帧,序列或标量值。 准备 在此秘籍中,我们计算移动数据集每一列中的所有缺失值。...和cumprod 四、选择数据子集 在本章中,我们将介绍以下主题: 选择序列数据 选择数据帧的行 同时选择数据帧的行和列 同时通过整数和标签和选择数据 加速标量选择 以延迟方式对行切片 按词典顺序切片

    37.6K10

    Pandas 数据分析技巧与诀窍

    Pandas是一个建立在NumPy之上的开源Python库。Pandas可能是Python中最流行的数据分析库。它允许你做快速分析,数据清洗和准备。...它将分为以下几点: 1、在Pandas数据流中生成数据。 2、数据帧内的数据检索/操作。...2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...: 假设您想通过一个id属性对2000行(甚至整个数据帧)的样本进行排序。

    11.5K40

    超全的pandas数据分析常用函数总结:下篇

    基础知识在数据分析中就像是九阳神功,熟练的掌握,加以运用,就可以练就深厚的内力,成为绝顶高手自然不在话下! 为了更好地学习数据分析,我对于数据分析中pandas这一模块里面常用的函数进行了总结。...用append合并 data.append(data2) # 在原数据集的下方合并入新的数据集 输出结果: ?...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...6.2.3 用loc取具体值 data.loc[6,"id"] 输出结果:107 6.2.4 用iloc取连续的多行 提取第3行到第6行 data.iloc[2:6] 输出结果: ?...在筛选后的数据中,对money进行求和 输出结果:9.0 8.

    3.9K20

    超全的pandas数据分析常用函数总结:下篇

    基础知识在数据分析中就像是九阳神功,熟练的掌握,加以运用,就可以练就深厚的内力,成为绝顶高手自然不在话下! 为了更好地学习数据分析,我对于数据分析中pandas这一模块里面常用的函数进行了总结。...用append合并 data.append(data2) # 在原数据集的下方合并入新的数据集 输出结果: ?...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...6.2.3 用loc取具体值 data.loc[6,"id"] 输出结果:107 6.2.4 用iloc取连续的多行 提取第3行到第6行 data.iloc[2:6] 输出结果: ?...# 在筛选后的数据中,对money进行求和 输出结果:9.0 8.

    5K20

    Python数据处理神器pandas,图解剖析分组聚合处理

    数据处理时同样需要按类别分组处理,面对这样的高频功能需求, pandas 中提供 groupby 方法进行分组。 按 class 进行分组 如下图的代码: 17-19行,两行的写法是一样的。...你还可以传入具体的数据,他实际会按你传入的数据的值进行分组。 ---- 怎么处理这些组? 分组只是处理的第一步,一般来说,我们不应该用遍历去处理每个组。...在pandas中,为我们提供了一些聚合方法用于处理组数据。 apply apply 只是一种对每个分组进行处理的通用方式。来看看流程动图: apply 方法中传入一个用于处理的方法。...apply 在处理的最后一步,把每个分组的处理结果合并成一个 DataFrame 返回。 ---- apply 中还可以传入自定义函数,比如我们希望用 value 减去 age 。...而分组处理的结果无非3种: 结果会被压缩。比如原数据有100行2个组,分组后的结果就只有2行了。 结果保持原样。比如希望用每行的年龄减去所在组的平均年龄。

    1.3K21

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    导读 学Pandas有一年多了,用Pandas做数据分析也快一年了,常常在总结梳理一些Pandas中好用的方法。...在这一过程中,如何既能保证数据处理效率而又不失优雅,Pandas中的这几个函数堪称理想的解决方案。 为展示应用这3个函数完成数据处理过程中的一些demo,这里以经典的泰坦尼克号数据集为例。...对象经过groupby分组后调用apply时,数据处理函数作用于groupby后的每个子dataframe上,即作用对象还是一个DataFrame(行是每个分组对应的行;列字段少了groupby的相应列...应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...在Python中提到map关键词,个人首先联想到的是两个场景:①一种数据结构,即字典或者叫映射,通过键值对的方式组织数据,在Python中叫dict;②Python的一个内置函数叫map,实现数据按照一定规则完成映射的过程

    2.5K10

    pandas每天一题-题目9:计算平均收入的多种方式

    如果对你有帮助,记得转发推荐给你的好友! 上期文章:pandas每天一题-题目8:去重计数的多种实现方式 后台回复"数据",可以下载本题数据集 如下数据: 数据描述: 此数据是订单明细表。...一个订单会包含很多明细项,表中每个样本(每一行)表示一个明细项 order_id 列存在重复 quantity 是明细项数量 需求:计算订单平均收入?...按 order_id 分组即可 行3:由于收入需要计算,因此使用 apply 可以充分控制每一组汇总的细节 行4:参数 g 就是每个 order_id 的组,是一个表(DataFrame),这里是计算总收入...) .sum() .mean() ) 行2:直接计算收入,此时得到的是列(Series) 行3:对列分组,但是列里面没有分组依据(order_id),我们可以直接把数据传入。...注意这里不是列名(字符串),而是一列数据 行4:这里的 sum 是 groupby 后的操作,表达的是每一组的统计方式,我们需要求总订单收入 行5:上一步得到每个订单的收入,仍然是列(Series),直接求平均

    1.1K20
    领券