在pytorch中的多GPU训练一般有2种DataParallel(DP)和DistributedDataParallel(DDP) ,DataParallel是最简单的的单机多卡实现,但是它使用多线程模型...在下面的示例中,调用该方法的所有衍生进程都将具有从 0 到 3 的rank值。我们可以使用它来识别各个进程,pytorch会将rank = 0 的进程作为基本进程。...对于多卡训练在初始化模型后,还要将其分配给每个GPU。...在DP中,全程维护一个 optimizer,对各个GPU上梯度进行汇总,在主卡进行参数更新,之后再将模型参数 广播到其他GPU。 所以相较于DP, DDP传输的数据量更少,因此速度更快,效率更高。...所以如果多卡训练建议使用DDP进行,但是如果模型比较简单例如2个GPU也不需要多机的情况下,那么DP的代码改动是最小的,可以作为临时方案使用。 作者:Kaustav Mandal
为了解决这些问题,从业者越来越多地转向分布式训练。分布式训练是使用多个GPU和/或多个机器训练深度学习模型的技术。...(同步步骤在技术上是可选的,但理论上更快的异步更新策略仍是一个活跃的研究领域) 在模型并行化中,模型训练作业是在模型上进行分割的。工作中的每个GPU接收模型的一个切片,例如它的层的一个子集。...普通的PyTorch训练脚本在单个进程中执行其代码的单一副本。使用数据并行模型,情况就更加复杂了:现在训练脚本的同步副本与训练集群中的gpu数量一样多,每个gpu运行在不同的进程中。...请注意,此代码仅适用于在一台多GPU机器上进行训练!同一台机器用于启动作业中的每个流程,因此训练只能利用连接到该特定机器的GPU。.../pytorch-handbook),这本pytorch的中文手册已经在github上获取了12000+的star是一本非常详细的pytorch入门教程和查询手册,如果是想深入的学习,赶紧关注这个项目吧
于是在gayhub上找到了这样一份教程《Pytorch模型训练实用教程》,写得不错,特此根据它来再学习一下Pytorch。...这个学习率的变化,会受到梯度的大小和迭代次数的影响。梯度越大,学习率越小;梯度越小,学习率越大。缺点是训练后期,学习率过小,因为 Adagrad 累加之前所有的梯度平方作为分母。...Adadelta 是 Adagrad 的改进。Adadelta 分母中采用距离当前时间点比较近的累计项,这可以避免在训练后期,学习率过小。...L-BFGS 是对 BFGS 的改进,特点就是节省内存。 学习率调整 为了让学习率能够随着模型的训练进行动态调整,Pytorch提供了下列一些学习率调整方法。...当调整学习率之后,让学习率调整策略冷静一下,让模型再训练一段时间,再重启监测模式。
[知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...一、问题描述 关于在CNN中文本预测sigmoid分类器训练准确率的问题? 对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ]。...在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?...举个例子,输入一个样本训练,共有十个标签,其中有两个为1,而你预测结果为全部是0,这时你得到准确率为0.8。最后输出的ac是所有样本的平均。可以看出这个准确率是不可信的。...设置合适的权重值,val_acc上升了,val多标签acc也达到了更高。 关于如何设置合适权重,笔者还在实验中,可以关注下笔者的知乎和博客。后面实验结果会及时更新。
Opacus是一个能够训练PyTorch模型的差分隐私的库。它支持在客户端上以最小的代码改动进行训练,对训练性能影响不大,并允许客户端在线跟踪任何给定时刻的隐私预算支出。...它通常用于分析中,并且对机器学习(ML)社区的兴趣日益浓厚。随着Opacus的发布,我们希望为研究人员和工程师提供一条更轻松的途径,以在ML中采用差异隐私,并加速该领域的DP研究。...Now it's business as usual 训练后,生成的工件是标准的PyTorch模型,没有额外的步骤或部署私有模型的障碍:如果你今天可以部署模型,则可以在使用DP对其进行了训练之后进行部署...Opacus通过修改标准的PyTorch优化器来做到这一点,以便在训练过程中实施(和测量)DP。 更具体地说,我们的方法集中在差分私有随机梯度下降(DP-SGD)上。...通过在每次迭代中将噪声添加到梯度中,我们可以防止模型记住其训练示例,同时仍可进行汇总学习。(无偏的)噪声自然会在训练过程中看到的许多批次中抵消。
前言 最近在重温Pytorch基础,然而Pytorch官方文档的各种API是根据字母排列的,并不适合学习阅读。...于是在gayhub上找到了这样一份教程《Pytorch模型训练实用教程》,写得不错,特此根据它来再学习一下Pytorch。...,在这些重复的层中,又会有多个相同结构的残差块ResidualBlock。...默认不初始化权值的情况下,默认采用的随机权值满足均匀分布、 Pytorch中,各种初始化方法如下: Xavier 均匀分布 torch.nn.init.xavier_uniform_(tensor, gain...在我之前的博文深度学习基础:7.模型的保存与加载/学习率调度中提到过模型的保存和加载,摘过来放到这里。
最近自己想写一个高级一点的抽象来更方便的训练 pytorch 网络, 无意间发现, pytorch 用户下面有个 ignite repo, 好奇就看了一下这是个什么东西....原来是 pytorch 已经提供了一个高级抽象库来训练 pytorch模型了, 既然有了轮子, 那就没必要自己造了, 好好用着就行了. 没事读读源码, 也可以学习一下大佬们是怎么抽象的....中 对于 评估过程来说, process_function 是一个 前向+计算 metrics 的过程。...func(trainer, state) """ @engine.on(...) def some_func(trainer): pass Engine.run() # 训练/评估 模型 Metric...定义了一些模型评估标准 在创建 evaluator 的时候会指定一些 metric,这些metric 会由框架自动注册成为 evaluator 的 event handler,会在相应的事件发生时调用相应的处理函数
在本文[1]中,我们将首先了解数据并行(DP)和分布式数据并行(DDP)算法之间的差异,然后我们将解释什么是梯度累积(GA),最后展示 DDP 和 GA 在 PyTorch 中的实现方式以及它们如何导致相同的结果...当处理高分辨率图像或占用大量内存的其他类型的数据时,假设目前大多数大型 DNN 模型的训练都是在 GPU 上完成的,根据可用 GPU 的内存,拟合小批量大小可能会出现问题。...和 3. — 如果您幸运地拥有一个大型 GPU,可以在其上容纳所需的所有数据,您可以阅读 DDP 部分,并在完整代码部分中查看它是如何在 PyTorch 中实现的,从而跳过其余部分。...从上面的例子中,我们可以通过 3 次迭代累积 10 个数据点的梯度,以达到与我们在有效批量大小为 30 的 DDP 训练中描述的结果相同的结果。...DistributedDataParallel 中,以支持多 GPU 训练。
「@Author:Runsen」 BERT模型在NLP各项任务中大杀四方,那么我们如何使用这一利器来为我们日常的NLP任务来服务呢?首先介绍使用BERT做文本多标签分类任务。...这篇论文从三种路线进行了探索: (1) BERT自身的微调策略,包括长文本处理、学习率、不同层的选择等方法; (2) 目标任务内、领域内及跨领域的进一步预训练BERT; (3) 多任务学习。...微调后的BERT在七个英文数据集及搜狗中文数据集上取得了当前最优的结果。...Bert模型加载 Transformer 为我们提供了一个基于 Transformer 的可以微调的预训练网络。 由于数据集是英文, 因此这里选择加载bert-base-uncased。...bert微调就是在预训练模型bert的基础上只需更新后面几层的参数,这相对于从头开始训练可以节省大量时间,甚至可以提高性能,通常情况下在模型的训练过程中,我们也会更新bert的参数,这样模型的性能会更好
18年之前已经有像多臂老虎机这种方法在使用,但是AlphaGo击败围棋世界冠军这次事件引起了业界极大关注,推荐任务的研究也开始转向基于强化学习的推荐模型 整体的发展趋势就是模型逐渐从人工经验向自动化,深度模型的归一化...推荐系统中的核心问题 点击率预测模型是推荐系统中的核心问题。举个例子,如上图所示是一个网页,网页上有一些内容,也有一些位置留给广告,广告对于一个网站来说是比较大的收入来源。...在2021年IJCAI上面有这样一篇Survey论文,是上海交通大学张伟楠老师和华为诺亚实验实的联合工作,将深度学习时代的点击率预测模型分为了三类: 第一类就是基于组合特征挖掘的模型; 第二类针对用户行为的模型...论文对15年至今比较有代表性的深度学习点击率预测模型进行复现,在几个公开数据集上进行调参、再调优。 实验结果显示,模型创新,结构创新带来的收益越来越小。...简要介绍下已有的几种并行训练的方法: 第一类是数据并行,例如基于all-reduce的Horovod,这种方式在每个GPU卡中存一份完整的模型副本,需要把模型都能存得下,我们模型如果变得大,GPU显存不足以存下完整模型
torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易。本文主要介绍如何 fine-tune torchvision 中预训练好的模型。...所对应权重,并加载到模型中 # 也可以自己下载 权重,然后 load 到 模型中,源码中有 权重的地址。...., out_features=100) # 这样就 哦了,修改后的模型除了输出层的参数是 随机初始化的,其他层都是用预训练的参数初始化的。...用刚才举的例子就是: 预训练的模型中 有个 名字叫fc 的 Module。 在类定义外,我们 将另一个 Module 重新 赋值给了 fc。...类定义内的 fc 对应的 Module 就会从 模型中 删除。
微软Windows团队的AI已经公布了˚F IRST DirectML的预览作为后端PyTorch训练ML车型。...此版本允许在任何 DirectX12 GPU 和 WSL 上加速 PyTorch 的机器学习训练,释放混合现实计算的新潜力。...在这个名为“DML”的新设备中,通过在调用运算符时引入最少的开销来调用直接 ML API 和 Tensor 原语;它们的工作方式与其他现有后端非常相似。...PyTorch-DirectML 套件可以使用 GPU 机器学习库 DirectML 作为其后端,允许在 DirectX12 GPU 和 WSL(适用于 Linux 的 Windows 子系统)上训练模型...Microsoft 与 AMD、Intel 和 NVIDIA 合作,为 PyTorch 提供这种硬件加速的训练体验。PyTorch-DirectML 包安装简单,只需更改现有脚本中的一行代码。
如果让我投票给深度学习中,最不想调试,但又必须要小心调试的参数,毫无疑问会投给学习率,今天就来说说这个。...细节咱就不多说,如果你想复现本文结果,可以发送关键词“有三AI训练营12-16”到后台获取网络配置等文件。 02学习率变更策略 学习率是一个非常重要的参数,可以直接影响模型的收敛与否。...如上图,在整个的优化过程中学习率不变,这是非常少使用的策略,因为随着向全局最优点逼近,学习率应该越来越小才能避免跳过最优点。...训练数据集大小9000,batchsize=64,可知10000次迭代时,epoch=64*10000/9000>70,在该学习率下应该已经充分训练了,实验结果如下。 ? ?...step,multistep方法的收敛效果最好,这也是我们平常用它们最多的原因。虽然学习率的变化是最离散的,但是并不影响模型收敛到比较好的结果。 其次是exp,poly。
近期参加了kesci平台上的云脑机器学习训练营,接触到了FFM模型,因此这篇文章,将主要讲述FFM模型在CTR预估中的应用。...Machine)的升级版模型,美团点评技术团队在站内CTR/CVR的预估上使用了该模型,取得了不错的效果。...,所以在应用模型时直接弃用了这一天的数据;另外时间段上可以看到工作时间和非工作时间的浏览数是明显不同的。...特征工程做完之后,就是对数据格式的转换(转换成FFM模型需要的格式:“field_id:feat_id:value”),以及使用模型进行训练了: ###将数据格式转换为FFM模型需要的格式,分别对类别型和数值型数据做处理...划重点:数值型特征必须先进行归一化,且必须保证训练集和测试集在同个变换空间内。 本文只是介绍对FFM模型的简单应用,在特征工程上没有特别的花费功夫,适合初学者了解这个模型的使用。
这些模型不仅提高了模型的透明度,而且通过在训练过程中结合高级人类可解释的概念(如“颜色”或“形状”),培养了对系统决策的新信任感。...❞ 在这篇博文[1]中,我们将深入研究这些技术,并为您提供使用简单的 PyTorch 接口实现最先进的基于概念的模型的工具。...通过实践经验,您将学习如何利用这些强大的模型来增强可解释性并最终校准人类对您的深度学习系统的信任。 概念瓶颈模型 在这个介绍中,我们将深入探讨概念瓶颈模型。...这模型在 2020 年国际机器学习会议上发表的一篇论文中介绍,旨在首先学习和预测一组概念,例如“颜色”或“形状”,然后利用这些概念来解决下游分类任务: 通过遵循这种方法,我们可以将预测追溯到提供解释的概念...在视觉上,这种权衡可以表示如下: 可解释模型擅长提供高质量的解释,但难以解决具有挑战性的任务,而黑盒模型以提供脆弱和糟糕的解释为代价来实现高任务准确性。
来源:Deephub Imba 本文约3200字,建议阅读7分钟 本文将介绍解梯度检查点(Gradient Checkpointing),这是一种可以让你以增加训练时间为代价在 GPU 中训练大模型的技术...我们将在 PyTorch 中实现它并训练分类器模型。 作为机器学习从业者,我们经常会遇到这样的情况,想要训练一个比较大的模型,而 GPU 却因为内存不足而无法训练它。...当我们在出于安全原因不允许在云计算的环境中工作时,这个问题经常会出现。在这样的环境中,我们无法足够快地扩展或切换到功能强大的硬件并训练模型。...通过执行这些操作,在计算过程中所需的内存从7减少到3。 在没有梯度检查点的情况下,使用PyTorch训练分类模型 我们将使用PyTorch构建一个分类模型,并在不使用梯度检查点的情况下训练它。...input是模型的输入,在我们的例子中是图像。这里的checkpoint_sequential仅用于顺序模型,对于其他一些模型将产生错误。
模型训练中的学习率规划器 在使用梯度下降算法的机器学习模型中,相比恒定的学习率,使用自适应的学习率可以提升模型的性能,缩短训练时间。 由此,学习率规划器也被称为学习率的模拟退火,自适应学习率。...在本文中统一称为学习率规划器。在每批次的训练结束后,默认情况下学习率规划器将使用相同的学习率更新权重。 在训练过程中,最简单的调整学习率的方法就是让学习率随着时间的推移而不断衰减。...在训练开始时,我们通常使用较大的学习率来让模型快速达到较好的性能,随后通过衰减学习率使模型权重更好地逼近最优的配置。 这就是学习率规划器可以达到更快的速度和更优的性能的原因。...注:译者运行代码发现有无学习率衰减在本例中影响并不明显,在原作者的例子中甚至无学习率衰减的模型性能还要好一点,更多体现在后期准确率的稳定上,将正确率随epochs的曲线绘制出来发现有学习率衰减的模型在epochs...你可以按照指数规律划分学习率规划器的参数,也可以根据模型在训练集/测试集上响应的结果自适应地调整学习率规划器参数。 回顾总结 本片文章探究了神经网络训练过程中的学习率规划器。
在大模型技术的快速演进中也暴露了若干挑战。...训练架构】 在整个训练过程中,我们从如下几个方面进一步剖析TStor CSP的实现方案: 一、高速读写CheckPoint 对于大模型分布式训练任务来说,模型CheckPoint的读写是训练过程中的关键路径...在大模型系统中同样如此,存储系统的IO中断或数据丢失会直接影响模型训练效果,严重者会导致近几个epoch任务需要推倒重做,大大影响了业务效率。...在耗时几个月的大模型训练过程中,TStor CSP未出现一例故障,严格保障了系统可用性和数据可靠性。...TStor CSP在支撑大模型训练场景中不断优化自身的运维管控能力,顺利支持了多套大模型业务的复杂运维需求。 图形化运维 集群创建,扩容以及后期的运维都可以通过在CSP控制台操作完成。 【图7.
本项目旨在深入探讨机器学习在体育训练中的应用,结合实例详细介绍部署过程,同时展望未来发展方向。I....机器学习在体育训练中的应用A. 数据准备与收集项目开始于对运动员的大量数据收集。这些数据可以包括运动员的生理指标、运动技能数据、训练历史等。...优化的目标是确保模型在未来的真实场景中能够准确预测运动员的表现。III. 实例展示A. 运动员表现预测考虑一个实际案例,通过机器学习模型预测篮球运动员在比赛中的得分表现。...(y_test, injury_pred)print(f"准确率:{accuracy}")通过这个模型,教练可以在训练中监测运动员的状态,预测受伤风险,并采取相应的康复措施。...对手分析与战术优化在篮球比赛中,对手团队可能有不同的强项和弱项。通过机器学习模型,可以分析对手的比赛数据,预测其可能的战术和策略。
来自:吴恩达机器学习Regularization部分。 如上图所示,有时候我们做训练的时候,会得到测试集的准确率或者验证集的准确率高于训练集的准确率,这是什么原因造成的呢?...(1)数据集太小的话,如果数据集切分的不均匀,或者说训练集和测试集的分布不均匀,如果模型能够正确捕捉到数据内部的分布模式话,这可能造成训练集的内部方差大于验证集,会造成训练集的误差更大。...这时你要重新切分数据集或者扩充数据集,使其分布一样 (2)由Dropout造成,它能基本上确保您的测试准确性最好,优于您的训练准确性。...Dropout迫使你的神经网络成为一个非常大的弱分类器集合,这就意味着,一个单独的分类器没有太高的分类准确性,只有当你把他们串在一起的时候他们才会变得更强大。 ...因为在训练期间,Dropout将这些分类器的随机集合切掉,因此,训练准确率将受到影响 在测试期间,Dropout将自动关闭,并允许使用神经网络中的所有弱分类器,因此,测试精度提高。
领取专属 10元无门槛券
手把手带您无忧上云