首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Excel公式技巧94:在不同的工作表中查找数据

很多时候,我们都需要从工作簿中的各工作表中提取数据信息。如果你在给工作表命名时遵循一定的规则,那么可以将VLOOKUP函数与INDIRECT函数结合使用,以从不同的工作表中提取数据。...假如有一张包含各种客户的销售数据表,并且每个月都会收到一张新的工作表。这里,给工作表选择命名规则时要保持一致。...在汇总表上,我们希望从每个月份工作表中查找给客户XYZ的销售额。假设你在单元格区域B3:D3中输入有日期,包括2020年1月、2020年2月、2020年3月,在单元格A4中输入有客户名称。...每个月销售表的结构是在列A中是客户名称,在列B中是销售额。...当你有多个统一结构的数据源工作表,并需要从中提取数据时,本文介绍的技巧尤其有用。 注:本文整理自vlookupweek.wordpress.com,供有兴趣的朋友参考。 undefined

13.1K10

在Python中实现二分查找法的递归

1 问题 如何在Python中实现二分查找法的递归? 2 方法 二分查找法又称折半查找法,用于预排序列表的查找问题。...要在排序列表alist中查找元素t,首先,将列表alist中间位置的项与查找关键字t比较,如果两者相等,则查找成功;否则利用中间项将列表分成前、后两个子表,如果中间位置项目大于t,则进一步查找前一子表,...否则进一步查找后一子表。...重复以上过程,直到找到满足条件的记录,即查找成功;或者直到子表不存在为止,即查找不成功。...__=='__main__':main() 3 结语 对于如何在Python中实现二分查找法的递的问题,经过测试,是可以实现的,在python中还有很查找法,比如顺序查找法、冒泡排序法等。

18410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言对推特twitter数据进行文本情感分析|附代码数据

    ----点击标题查阅往期内容NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据左右滑动查看更多01020304然后查看推特中是否含有引用 ,并且对比不同平台上的数量。...通过特征词情感倾向分别计算不同平台的情感比,并且进行可视化。在统计出不同情感倾向的词的数量之后,绘制他们的置信区间。...案例:挖掘人民网留言板文本数据Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据R语言对NASA元数据进行文本挖掘的主题建模分析...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例用于NLP的Python:使用Keras进行深度学习文本生成长短期记忆网络LSTM在时间序列预测和文本分类中的应用用...NLP的Python:使用Keras的多标签文本LSTM神经网络分类R语言文本挖掘使用tf-idf分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据Python使用神经网络进行简单文本分类

    79700

    R语言对推特twitter数据进行文本情感分析|附代码数据

    ----点击标题查阅往期内容NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据左右滑动查看更多01020304然后查看推特中是否含有引用 ,并且对比不同平台上的数量。...通过特征词情感倾向分别计算不同平台的情感比,并且进行可视化。在统计出不同情感倾向的词的数量之后,绘制他们的置信区间。...案例:挖掘人民网留言板文本数据Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据R语言对NASA元数据进行文本挖掘的主题建模分析...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例用于NLP的Python:使用Keras进行深度学习文本生成长短期记忆网络LSTM在时间序列预测和文本分类中的应用用...NLP的Python:使用Keras的多标签文本LSTM神经网络分类R语言文本挖掘使用tf-idf分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据Python使用神经网络进行简单文本分类

    82500

    在PYTHON中进行主题模型LDA分析

    p=6227 主题建模是一种在大量文档中查找抽象主题的艺术方法。一种作为监督无的机器学习方法,主题模型不容易评估,因为没有标记的“基础事实”数据可供比较。...然而,由于主题建模通常需要预先定义一些参数(首先是要发现的主题ķ的数量),因此模型评估对于找到给定数据的“最佳”参数集是至关重要的。 概率LDA主题模型的评估方法 使用未标记的数据时,模型评估很难。...由于我们有26个不同的值ks,我们将创建和比较26个主题模型。请注意,还我们alpha为每个模型定义了一个参数1/k(有关LDA中的α和测试超参数的讨论,请参见下文)。...在这里,我们将使用lda,因此我们通过参数,如n_iter或n_topics(例如,而与其他包的参数名称也会有所不同num_topics,不是而n_topics在gensim)。...阿尔法和贝塔参数 除了主题数量之外,还有alpha和beta(有时是文献中的eta)参数。

    2.1K20

    主成分分析(PCA)在R 及 Python中的实战指南

    这种主导普遍存在是因为变量有相关的高方差。当变量被缩放后,我们便能够在二维空间中更好地表示变量。 在Python & R中应用 主成分分析方法 (带有代码注解) ▼ 要选多少主成分?...因为,来自训练和测试的主成分的组合向量将有不同的方向(方差不同的缘故)。由于这个原因,我们最终会比较在落在不同轴上的数据。这样,来自训练和测试数据的结果向量应该有相同的轴。...让我们在R中做一下: #加上带主成分的训练集 > train.data 的分数排行榜感到高兴。试试用下随机森林。 对于Python用户:为了在Python中运行主成分分析,只需从sklearn库导入主成分分析。...和上文提到的对R用户的解释是一样的。当然,用Python的结果是用R后派生出来的。Python中所用的数据集是清洗后的版本,缺失值已经被补上,分类变量被转换成数值型。

    2.9K80

    python主题建模可视化LDA和T-SNE交互式可视化|附代码数据

    LDA是一种无监督的技术,这意味着我们在运行模型之前不知道在我们的语料库中有多少主题存在。 主题连贯性是用于确定主题数量的主要技术之一。 ...左侧面板,标记为Intertopic Distance Map,圆圈表示不同的主题以及它们之间的距离。类似的主题看起来更近,而不同的主题更远。图中主题圆的相对大小对应于语料库中主题的相对频率。...NLP:主题LDA、情感分析疫情下的新闻文本数据R语言对NASA元数据进行文本挖掘的主题建模分析R语言文本挖掘、情感分析和可视化哈利波特小说文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例用于...NLP的Python:使用Keras进行深度学习文本生成长短期记忆网络LSTM在时间序列预测和文本分类中的应用用Rapidminer做文本挖掘的应用:情感分析R语言文本挖掘tf-idf,主题建模,情感分析...分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据Python使用神经网络进行简单文本分类R语言自然语言处理(NLP):情感分析新闻文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例

    52140

    NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

    LDA建模,就是从语料库中挖掘出不同主题并进行分析,换言之,LDA提供了一种较为方便地量化研究主题的机器学习方法。...从下图可以看出,主题3高考和医保、主题6 违法建筑、主题13教育拆迁的留言内容中积极情感占较大比例。 图表 我们发现在不同主题中情感得分最高的地区中海淀区最多,其次是朝阳区和大兴区。...---- 点击标题查阅往期内容 Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集 自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据 R语言对NASA元数据进行文本挖掘的主题建模分析...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据 Python、R对小说进行文本挖掘和层次聚类可视化分析案例 用于NLP的Python:使用Keras进行深度学习文本生成 长短期记忆网络LSTM在时间序列预测和文本分类中的应用...用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类 R语言文本挖掘使用tf-idf分析NASA元数据的关键字 R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据 Python

    43000

    NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

    点击标题查阅往期内容python主题建模可视化LDA和T-SNE交互式可视化左右滑动查看更多01020304主题分析外地户口问题呼声最高接下来,我们对于语料进行LDA建模,就是从语料库中挖掘出不同主题并进行分析...从下图可以看出,主题3高考和医保、主题6 违法建筑、主题13教育拆迁的留言内容中积极情感占较大比例。图表我们发现在不同主题中情感得分最高的地区中海淀区最多,其次是朝阳区和大兴区。...点击标题查阅往期内容Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据R语言对NASA元数据进行文本挖掘的主题建模分析...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例用于NLP的Python:使用Keras进行深度学习文本生成长短期记忆网络LSTM在时间序列预测和文本分类中的应用用...NLP的Python:使用Keras的多标签文本LSTM神经网络分类R语言文本挖掘使用tf-idf分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据Python使用神经网络进行简单文本分类

    22100

    NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

    ---- python主题建模可视化LDA和T-SNE交互式可视化 01 02 03 04 主题分析 外地户口问题呼声最高 接下来,我们对于语料进行LDA建模,就是从语料库中挖掘出不同主题并进行分析...从下图可以看出,主题3高考和医保、主题6 违法建筑、主题13教育拆迁的留言内容中积极情感占较大比例。 图表 我们发现在不同主题中情感得分最高的地区中海淀区最多,其次是朝阳区和大兴区。...---- 点击标题查阅往期内容 Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集 自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据 R语言对NASA元数据进行文本挖掘的主题建模分析...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据 Python、R对小说进行文本挖掘和层次聚类可视化分析案例 用于NLP的Python:使用Keras进行深度学习文本生成 长短期记忆网络LSTM在时间序列预测和文本分类中的应用...用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类 R语言文本挖掘使用tf-idf分析NASA元数据的关键字 R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据 Python

    37700

    Python主题建模详细教程(附代码示例)

    在本文中,我们将专注于主题建模,涵盖如何通过文本预处理来准备数据,如何使用潜Dirichlet分配(LDA)分配最佳主题数量,如何使用LDA提取主题,以及如何使用pyLDAvis可视化主题。...LDA使用两个狄利克雷分布,其中: •K是主题数量。•M表示文档数量。•N表示给定文档中的单词数量。•Dir(alpha)是每个文档的主题分布的狄利克雷分布。...你可以使用 pip install pyldavis 在 Python 中轻松安装,并使用 enable_notebook() 在 Python 笔记本上运行可视化。...气泡之间的距离表示主题之间的语义距离,如果气泡重叠,这意味着有很多共同的词。在我们的例子中,主题很好地分离且不重叠。...每个文档(在我们的案例中为评论)可以展示多个主题,且比例不同。选择具有最高比例的主题作为该文档的主题。我们使用一致性分数定义了主题的数量,并使用pyLDAvis可视化了我们的主题和关键词。

    91831

    python程序执行时间_用于在Python中查找程序执行时间的程序

    参考链接: Python程序来查找数字的因数 python程序执行时间  The execution time of a program is defined as the time spent by...因此,不用担心,在本教程中,我们将通过使用datetime模块来学习它,并且还将看到查找大量因数的执行时间。 用户将提供大量的数字,我们必须计算数字的阶乘,也必须找到阶乘程序的执行时间 。...在编写Python程序之前,我们将尝试了解该算法。    ...Algorithm to find the execution time of a factorial program:    查找阶乘程序的执行时间的算法:    Initially, we will...翻译自: https://www.includehelp.com/python/find-the-execution-time-of-a-program.aspx  python程序执行时间

    2K30

    Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集|附代码数据

    在 LDA 模型中,每个文档由多个主题组成。...通过总结每个主题对各自文档的实际权重贡献来计算每个主题的文档数量。...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据 Python、R对小说进行文本挖掘和层次聚类可视化分析案例 用于NLP的Python:使用Keras进行深度学习文本生成 长短期记忆网络LSTM在时间序列预测和文本分类中的应用...用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类 R语言文本挖掘使用tf-idf分析NASA元数据的关键字 R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据 Python...R语言文本挖掘、情感分析和可视化哈利波特小说文本数据 Python、R对小说进行文本挖掘和层次聚类可视化分析案例 用于NLP的Python:使用Keras进行深度学习文本生成 长短期记忆网络LSTM在时间序列预测和文本分类中的应用

    52200

    R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

    : 1、LDA主题数量,多少个才是最优的。...2、作出主题之后,主题-主题,主题与词语之间关联如何衡量。 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起。...抽样的算法,如吉布斯抽样(gibbs sampling)主要是构造一个马尔科夫链,从后验的实证的分布中抽取一些样本,以之估计后验分布。吉布斯抽样的方法在R软件的lda包中广泛使用。...对于未知分布q,复杂度的值越小,说明模型越好,而对数似然值越大越好,刚好相反。基于复杂度和对数似然值判断语料库中的主题数量,就是计算不同主题数量下的复杂度和对数似然值之间的变化。...参考:R之文档主题模型 4、模型比较图 在topicmodel使用过程中,可能有很多的模型拿进来一起比较。

    7.5K31

    广义估计方程和混合线性模型在R和python中的实现

    广义估计方程和混合线性模型在R和python中的实现欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍针对某个科学问题...(变数、变量、变项)协变量(covariate):在实验的设计中,协变量是一个独立变量(解释变量),不为实验者所操纵,但仍影响响应。...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...比值几率表示单位预测变量变化时响应变量的几率的乘性变化。在本例中,不适合。...Python、SPSS实现)混合线性模型介绍--Wiki广义估计方程中工作相关矩阵的选择及R语言代码在Rstudio 中使用pythonAn Introduction to Linear Mixed Effects

    45400

    【大数据实战】招聘网站职位分析

    在算法开始前,给所有页面一个相同的初始现金(cash)。当下载了某个页面P之后,将P的现金分摊给所有从P中分析出的链接,并且将P的现金清空。对于待抓取URL队列中的所有页面按照现金数进行排序。...用户在熟悉了核心对象之后,可以轻易的定制图像。matplotlib的对象体系也是计算机图形学的一个优秀范例。即使你不是Python程序员,你也可以从文中了解一些通用的图形绘制原则。...1.LDA生成过程 对于语料库中的每篇文档,LDA定义了如下生成过程(generativeprocess): 1.对每一篇文档,从主题分布中抽取一个主题; 2.从上述被抽到的主题所对应的单词分布中抽取一个单词...(LDA里面称之为wordbag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC),LDA以文档集合D作为输入,希望训练出的两个结果向量...对每个T中的topict,生成不同单词的概率φt,其中,pwi表示t生成VOC中第i个单词的概率。

    2.6K11

    Python之LDA主题模型算法应用

    在这篇文章中,我将介绍用于Latent Dirichlet Allocation(LDA)的lda Python包的安装和基本用法。我不会在这篇文章中介绍该方法的理论基础。...安装lda 在之前的帖子中,我介绍了使用pip和 virtualenwrapper安装Python包,请参阅帖子了解更多详细信息: 在Ubuntu 14.04上安装Python包 在Ubuntu 14.04...文档术语矩阵X具有395个词汇表中每个4258个词汇单词的出现次数。文档。例如,X [0,3117]是单词3117在文档0中出现的次数。...选择模型 接下来,我们初始化并拟合LDA模型。要做到这一点,我们必须选择主题的数量(其他方法也可以尝试查找主题的数量,但对于LDA,我们必须假设一个数字)。...主题字 从拟合模型中我们可以看到主题词概率: 从输出的大小我们可以看出,对于20个主题中的每一个,我们在词汇表中分配了4258个单词。对于每个主题,应该对单词的概率进行标准化。

    1.5K10

    自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据|附代码数据

    NLP:主题LDA、情感分析疫情下的新闻文本数据R语言对NASA元数据进行文本挖掘的主题建模分析R语言文本挖掘、情感分析和可视化哈利波特小说文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例用于...NLP的Python:使用Keras进行深度学习文本生成长短期记忆网络LSTM在时间序列预测和文本分类中的应用用Rapidminer做文本挖掘的应用:情感分析R语言文本挖掘tf-idf,主题建模,情感分析...分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据Python使用神经网络进行简单文本分类R语言自然语言处理(NLP):情感分析新闻文本数据Python、R对小说进行文本挖掘和层次聚类可视化分析案例...LSTM在时间序列预测和文本分类中的应用用Rapidminer做文本挖掘的应用:情感分析R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究R语言对推特twitter数据进行文本情感分析...Python使用神经网络进行简单文本分类用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类R语言文本挖掘使用tf-idf分析NASA元数据的关键字R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据

    61500

    python主题LDA建模和t-SNE可视化

    p=4261 使用潜在Dirichlet分配(LDA)和t-SNE中的可视化进行主题建模。 本文中的代码片段仅供您在阅读时更好地理解。有关完整的工作代码,请参阅此回购。...此外,文档通常涉及不同比例的多个主题,特别是在跨学科文档中(例如,60%关于生物学,25%关于统计学,15%关于计算机科学的生物信息学文章)。...t-SNE是不确定的,其结果取决于数据批次。换句话说,相对于批次中的其他数据点,相同的高维数据点可以被转换成不同批次的不同2-D或3-D向量。 可以使用各种语言实现t-SNE,但速度可能会有所不同。...把它放在一起:20个新闻组的例子 足够的理论:让我们亲自动手吧。在本节中,我们将在20个新闻组数据集上应用LDA算法,以发现每个文档中的基础主题,并使用t-SNE将它们显示为组。...在我们训练LDA模型之后,在我们使用t-SNE减少维数之前,简单地说明这些线: import numpy threshold = 0.5 _idx = np .amax(X_topics, axis

    1.4K31
    领券