首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】

在大数据时代,数据挖掘与机器学习成为了各行各业的核心技术。Python作为一种高效、简洁且功能强大的编程语言,得到了广泛的应用。...一、Python在数据挖掘中的应用 1.1 数据预处理 数据预处理是数据挖掘的第一步,是确保数据质量和一致性的关键步骤。良好的数据预处理可以显著提高模型的准确性和鲁棒性。...在机器学习中的应用 2.1 监督学习 监督学习是机器学习的主要方法之一,包括分类和回归。...三、Python在深度学习中的应用 3.1 深度学习框架 深度学习是机器学习的一个子领域,主要通过人工神经网络来进行复杂的数据处理任务。...在AI大模型中的应用 4.1 大模型简介 AI大模型如GPT-4o和BERT已经在自然语言处理、图像识别等领域取得了突破性进展。

15810

画出你的数据故事:Python中Matplotlib使用从基础到高级

摘要: Matplotlib是Python中广泛使用的数据可视化库,它提供了丰富的绘图功能,用于创建各种类型的图表和图形。...Matplotlib的灵活性和可定制性使得它成为数据科学家和分析师的首选工具。本文将带您从入门到精通,深入探索Matplotlib的各种绘图技巧。2....基本绘图在Matplotlib中显示中文字体需要特殊的设置,因为默认情况下Matplotlib可能无法正确显示中文字符。...配置Matplotlib: 在绘图之前,需要在Matplotlib中设置中文字体。可以使用rcParams来设置字体,这样在整个Matplotlib会话中都会生效。...总结Matplotlib是Python中强大的数据可视化工具,可以创建各种类型的图表和图形。

67320
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从数据分析到智能生产:AI在工业中的应用与未来

    这不仅包括直接的材料和人工成本,还涉及到通过优化流程减少浪费,提高资源利用率。 方法:降低变异是关键过程,在实现成本降低的过程中,减少生产和运营中的变异性是至关重要的。...而 AI 探索因子则是数据科学的运用,数据科学在工业 AI 的应用中扮演着重要角色。通过探索和分析大量数据,企业可以发现潜在的模式和趋势,从而对生产过程进行持续的改进和优化。...台积电通过深度集成 AI 技术到其生产流程中,不仅提高了制造精度,还优化了生产效率和产品质量。...(图 6,智能制造发展历程) 三、从企业最佳实践看 未来工业AI之路 (一)公辅车间的AI数字化应用 此外,我们可以在工厂车间这一具体环节看到工业 AI 发挥的巨大作用,IOT+ ML 公辅车间和机器学习技术在公辅车间的应用显著提升了能源效率并实现节能减碳...然而,这种提升的具体幅度会受到企业规模、行业特点、基础设施建设和现有数据管理水平等多种因素的影响。 具体来说,数据资产的标准化可以通过自动化和预测分析手段,实现产能提升 10% 至 30%。

    73210

    从数据分析到智能生产:AI在工业中的应用与未来

    这不仅包括直接的材料和人工成本,还涉及到通过优化流程减少浪费,提高资源利用率。方法:降低变异是关键过程,在实现成本降低的过程中,减少生产和运营中的变异性是至关重要的。...而 AI 探索因子则是数据科学的运用,数据科学在工业 AI 的应用中扮演着重要角色。通过探索和分析大量数据,企业可以发现潜在的模式和趋势,从而对生产过程进行持续的改进和优化。...台积电通过深度集成 AI 技术到其生产流程中,不仅提高了制造精度,还优化了生产效率和产品质量。...(图 6,智能制造发展历程)三、从企业最佳实践看未来工业AI之路(一)公辅车间的AI数字化应用此外,我们可以在工厂车间这一具体环节看到工业 AI 发挥的巨大作用,IOT+ ML  公辅车间和机器学习技术在公辅车间的应用显著提升了能源效率并实现节能减碳...然而,这种提升的具体幅度会受到企业规模、行业特点、基础设施建设和现有数据管理水平等多种因素的影响。具体来说,数据资产的标准化可以通过自动化和预测分析手段,实现产能提升 10% 至 30%。

    20810

    ECCV 2022 | 仅用全连接层处理视频数据,美图&NUS实现高效视频时空建模

    ,从图像域到视频域都取得了良好的效果。...为了应对这一挑战,研究者们提出了一种新颖的 MorphFC 层,它可以分层扩展全连接层的感受野,使其从小区域到大区域运行,按水平和垂直方向独立地处理每一帧。...以水平方向处理为例(如下图 3 中蓝色块部分),给定某一帧,首先沿水平方向拆分该帧形成块,并将每个块沿通道维度分成多个组,以降低计算成本。...特征转换完成后,重塑所有组回到该帧原来的维度,垂直方向处理方式相同(如图 3 中绿色块部分)。...除了沿水平和垂直方向拆分,还应用了一个全连接层来单独处理每个空间位置,以保证组与组之间能够沿着通道维度进行通信。 最后,再将水平、垂直和通道特征相加。

    40410

    「数据ETL」从数据民工到数据白领蜕变之旅(六)-将Python的能力嫁接到SSIS中

    在SSIS上使用python脚本 在控制流任务中,有【执行进程任务】,拉一个任务到右侧,并双击此任务进行详细配置。...为何不使用一步到位直接python完成或SSIS完成? 在python的群体中,的确熟练使用后,将数据再作一步,直接上传到数据库中,也并非难事。...* 系列文章 从数据民工到数据白领蜕变之旅(一)-工具总览 https://www.jianshu.com/p/2bd3f90206ec 从数据民工到数据白领蜕变之旅(二)-重温Excel催化剂经典 https.../p/d154b09c881d 「数据ETL」从数据民工到数据白领蜕变之旅(四)-有了PowerQuery还需要SSIS吗?...https://www.jianshu.com/p/7ca5a3785bd0 「数据ETL」从数据民工到数据白领蜕变之旅(五)-使用dotNET脚本实现SSIS无限扩展 https://www.jianshu.com

    3.1K20

    【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用

    从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用 前言 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!...数据预处理 在开始构建模型之前,我们通常需要对数据进行预处理。数据预处理是机器学习中的关键步骤,它可以帮助提升模型的性能。...在实际项目中,如何将这些技术应用到数据科学和机器学习项目中,显得尤为重要。在本部分,我们将通过一个完整的实战案例,演示如何从数据加载、预处理,到模型选择、调参、评估,最终实现一个完整的机器学习项目。...每一步都凝聚着数据科学的智慧,从基础概念的牢固掌握到高级模型的精细调优,Scikit-Learn为我们的分析和决策赋予了前所未有的力量。...以上就是关于【Python篇】从零到精通:全面揭秘Scikit-Learn在机器学习中的绝妙应用的内容啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

    46710

    【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的索引

    这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。...在一个二维数组中,各索引位置上的元素不再是标量而是一维数组: In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) ​ In [73]...在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。...注意:Python关键字and和or在布尔型数组中无效。要使用&与|。 通过布尔型数组设置值是一种经常用到的手段。...6], [20, 23, 21, 22], [28, 31, 29, 30], [ 8, 11, 9, 10]]) 记住,花式索引跟切片不一样,它总是将数据复制到新数组中

    1.6K20

    【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的ndarray

    第二个例子中,每个元素都与自身相加。 笔记:在本章及全书中,我会使用标准的NumPy惯用法import numpy as np。...你当然也可以在代码中使用from numpy import *,但不建议这么做。numpy的命名空间很大,包含许多函数,其中一些的名字与Python的内置函数重名(比如min和max)。...数据类型保存在一个特殊的dtype对象中。...标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类型在NumPy中就记作float64。表4-2列出了NumPy所支持的全部数据类型。...当你需要控制数据在内存和磁盘中的存储方式时(尤其是对大数据集),那就得了解如何控制存储类型。 ? ?

    70640

    【Java框架型项目从入门到装逼】第五节 - 在Servlet中接收和返回数据

    image.png 不论你是什么请求,你往服务器传递的数据只能是 字符串! 现在,我们可以在Servlet中接收这些参数! ? image.png 运行结果: ?...从道理上也能明白吧,客户端传递数据到我们的服务器,我们是不是首先得想办法把它存起来?好像给你一筐鸡蛋,然后他说,鸡蛋给你,框子我得拿走,那么你是不是得找一个容器,把鸡蛋装起来呢?不就是这个道理嘛。...image.png 在实际的开发中,传进来的数据肯定是不一样的,如果我们太依赖于getParameter这个方法,就无法做到灵活变通。...在刚才的例子中,我们添加以下代码: ? image.png 页面效果: ? image.png 我们通过这种方式,就可以往客户端发送一个数据。...因为其实传递到后台是有值的,只是为””,这一点和js不同,在Java中,””不等于假,它只是代表一个空字符串。所以我们需要修改一下验证条件。还有,为了不让代码继续往下执行,我们需要及时return。

    1.3K71

    在Docker中快速使用Oracle的各个版本(从10g到21c)的数据库

    为了测试需要,麦老师制作了各个版本的Oracle数据库环境,下载地址如下: # oracle nohup docker pull registry.cn-hangzhou.aliyuncs.com/lhrbest...中只需2步即可拥有Oracle 21c环境 【DB宝10】在Docker中只需2步即可拥有Oracle18c环境 【DB宝11】在Docker中只需2步即可拥有Oracle 11g企业版环境(11.2.0.3...) 【DB宝12】在Docker中只需2步即可拥有Oracle 12cR2(12.2.0.1)企业版环境 【DB宝13】在Docker中只需2步即可拥有Oracle 12cR1(12.1.0.2)企业版环境...【DB宝14】在Docker中只需2步即可拥有Oracle 11g企业版环境(11.2.0.4) 【DB宝7】如何在Docker容器中一步一步安装配置Oracle19c的ASM+DB环境 【DB...宝3】在Docker中使用rpm包的方式安装Oracle 19c DB宝4 本文结束。

    1.8K50

    Python数据分析面试:NumPy基础与应用

    本篇博客将深入浅出地探讨Python数据分析面试中与NumPy相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....数组重塑与拼接面试官可能要求您展示如何使用NumPy进行数组的重塑(reshape)、堆叠(stack)、水平/垂直拼接等操作。...、功能上的差异,避免在需要高性能计算时错误使用Python列表。...忽视数据类型转换:在进行数组运算时,注意数据类型的兼容性,必要时使用.astype()进行显式转换。...结语精通NumPy是成为一名合格Python数据分析师的必备条件。深入理解上述常见问题、易错点及应对策略,结合实际代码示例,您将在面试中展现出扎实的NumPy基础和出色的数据处理能力。

    24300

    每个数据科学家都应该知道的20个NumPy操作

    NumPy构成了数据科学领域中大部分Python库的基础。 ? 关于数据科学的一切都始于数据,数据以各种形式出现。数字、图像、文本、x射线、声音和视频记录只是数据源的一些例子。...无论数据采用何种格式,都需要将其转换为一组待分析的数字。因此,有效地存储和修改数字数组在数据科学中至关重要。...它构成了许多与数据科学相关的广泛使用的Python库的基础,比如panda和Matplotlib。 在这篇文章中,我将介绍20种常用的对NumPy数组的操作。...我们创建了一个由2到10之间的整数组成的3x2数组。 2. 0到1之间的随机浮点数 ? 浮点数在0和1之间的一维数组。可以用于创建随机噪声数据。 3....我们可以使用重塑函数将这些数组转换为列向量,然后进行垂直连接。 ? 14. Vstack 它用于垂直堆叠数组(行在彼此之上)。 ? 它也适用于高维数组。 ? 15.

    2.4K20

    精品课 - Python 数据分析

    对于数据结构,无非从“创建-存载-获取-操作”这条主干线去学习,当然面向具体的 NumPy 数组和 Pandas 数据帧时,主干线上会加东西。...听着很绕口,但这样理解数组之后很多问题都可以轻易理解,比如: 高维数组的转置 数组的重塑和打平 不同维度上的整合 我为上面那句话画了三幅图,注意比较数组“想象中的样子”、“打印出的样子”和“内存里的样子...Pandas WHY 下图左边的「二维 NumPy 数组」 仅仅储存了一组数值 (具体代表什么意思却不知道),而右边的「数据帧 DataFrame」一看就知道这是平安银行和茅台从 2018-1-3 到...DataFrame 数据帧可以看成是 数据帧 = 二维数组 + 行索引 + 列索引 在 Pandas 里出戏的就是行索引和列索引,它们 可基于位置 (at, loc),可基于标签 (iat...水平面上的灰点是网格 红线是终值条件 (产品在到期日支付函数) 两条深青线是边界条件 (产品在标的上下界时的支付) 蓝点是期权值 (产品在 0 时点的值) 从 T4 到 T0 一步步解的 (从后往前解

    3.3K40

    数组计算模块NumPy

    提供了高性能的数组对象 提供了大量的函数和方法 NumPy使用机器学习中的操作变得简单 NumPy是通过C语言实现的 NumPy的安装  pip install numpy  数组的分类 一维数组 跟Python...Python数据类型增加了更多种类的数值类型,为了区别于Python的数据类型,像bool、int、float等数据类型的名称末尾都加了 “_” 索引 用于标记数组当中对应元素的唯一数字,从0开始 索引的区间范围...数组重塑是更改数组的形状 使用reshape方法,用于改变数组的形状      重塑后数组所包含的元素个数必须与原数组的元素个数相同,元素发生变化,程序就会报错     数组转置 数组的行列转换 通过数组的...T属性和transpose方法实现  数组的增加 水平方向增加数据 hstack()函数 垂直方向增加数据 vstack()函数  数组的删除 使用delete()函数  矩阵 矩阵是数学的概念,而数组是计算机程序设计领域的概念...在NumPy中,矩阵是数组的分支,二维数组也称为矩阵 。

    8710

    谈反应式编程在服务端中的应用,数据库操作优化,从20秒到0.5秒

    反应式编程在客户端编程当中的应用相当广泛,而当前在服务端中的应用相对被提及较少。本篇将介绍如何在服务端编程中应用响应时编程来改进数据库操作的性能。...在确保正确性的前提下,实现数据库插入性能的优化。 如果读者已经了解了如何操作,那么剩下的内容就不需要再看了。...基础版本在同时插入小于20次时基本上可以较快的完成。但是如果数量级增加,例如需要同时插入一万条数据库,将会花费约20秒钟,存在很大的优化空间。...taskCompletionSource }); return taskCompletionSource.Task; } // 从队列中不断获取...但是,如果需要批量操作并发操作一万条数据,那么原始版本可能需要消耗20秒,而批量版本仅仅只需要0.5秒。 所有的示例代码均可以在代码库中找到。

    76700

    NV-LIO:一种基于法向量的激光雷达-惯性系统(LIO)

    这些进步正在重塑机器人领域,将它们的应用从自动驾驶扩展到包含消防机器人、安全机器人、送货机器人等多样化的环境,这些机器人在封闭的室内环境中需要克服各种障碍。...在此过程中,深度图像的大小是手动选择的,考虑到激光雷达点云的特征,如激光雷达通道数、水平分辨率和视场角(FoV)。...给定最大垂直 、最小垂直 、深度图像高度(h)和宽度(w)的参数,垂直分辨率是 ,水平分辨率是 。...考虑到这些因素,我们不再简单地使用相邻像素之间的微分,而是应用基于窗口的方法,假设窗口内的导数值相似。为窗口内每一对在水平和垂直方向上的导数值计算并求平均值,以减轻距离测量噪声的影响。...例如,在楼梯井的情况下,形成楼梯井的墙面的法线向量在水平方向上分布,导致在水平方向上具有高定位精度,但在垂直方向上可能存在模糊。

    28710

    从零开始深度学习(九):神经网络编程基础

    1、python中的广播 这是一个不同食物(每100g)中不同营养成分的卡路里含量表格,表格为3行4列,列表示不同的食物种类,从左至右依次为苹果(Apples),牛肉(Beef),鸡蛋(Eggs),土豆...到这里问题就解决了,现在来解释一下 A.sum(axis = 0) 中的参数 axis。...axis用来指明将要进行的运算是沿着哪个轴执行,在numpy中,0轴是垂直的,也就是列,而1轴是水平的,也就是行。...在进行运算时,会先将 矩阵水平复制 次,变成一个 的矩阵,然后再执行逐元素加法。 广播机制的一般原则如下: 首先是 numpy 广播机制 这里的广播和播音广播是完全不同的,它的要求是什么呢?...为了演示 Python-numpy 的一个容易被忽略的效果,特别是怎样在 Python-numpy 中构造向量,来做一个快速示范。

    1.3K20
    领券