首页
学习
活动
专区
圈层
工具
发布

在pandas中遍历DataFrame行

参考链接: 遍历Pandas DataFrame中的行和列 有如下 Pandas DataFrame: import pandas as pd inp = [{'c1':10, 'c2':100}, {...对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。...最佳解决方案 要以 Pandas 的方式迭代遍历DataFrame的行,可以使用: DataFrame.iterrows()for index, row in df.iterrows():     print...0.19.1): iterrows:数据的dtype可能不是按行匹配的,因为iterrows返回一个系列的每一行,它不会保留行的dtypes(dtypes跨DataFrames列保留)*iterrows:不要修改行你不应该修改你正在迭代的东西...改用DataFrame.apply():new_df = df.apply(lambda x: x * 2) itertuples:列名称将被重命名为位置名称,如果它们是无效的Python标识符,重复或以下划线开头

5.7K00

Python中的DataFrame模块学

本文是基于Windows系统环境,学习和测试DataFrame模块:   Windows 10   PyCharm 2018.3.5 for Windows (exe)   python 3.6.8...初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...('user.csv')   print (data)   将DataFrame数据写入csv文件   to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv   import...'表示去除行 1 or 'columns'表示去除列   # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有...n个元素补位NaN,否则去除   # subset: ['name', 'gender'] 在子集中去除NaN值,子集也可以index,但是要配合axis=1   # inplace: 如何为True,

3.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (六)Python:Pandas中的DataFrame

    step=1) 值 [['aaaa' '4000']  ['bbbb' '5000']  ['cccc' '6000']]         除了进行查看,我们还能简单的对行索引和列索引进行修改...admin  2 3  admin  3 另一种删除方法     name  a 1  admin  1 3  admin  3 (1)添加列         添加列可直接赋值,例如给 aDF 中添加... 0.10 5     Liuxi  5000  0.05 (3)删除行         删除数据可直接用“del 数据”的方式进行,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用...drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    6.9K20

    在 Python 中创建和修改 PDF 文件

    Python 中创建和修改 PDF 文件 了解如何在 Python 中创建和修改 PDF 文件非常有用。...但是,在您执行此操作之前,您需要使用以下命令安装它pip: $ python3 -m pip install PyPDF2 通过在终端中运行以下命令来验证安装: $ python3 -m pip show...这种保护扩展到在 Python 程序中读取 PDF。接下来,让我们看看如何使用 .pdf 文件解密 PDF 文件PyPDF2。...在ReportLab的用户手册中包含的如何从头开始生成PDF文档的例子太多了。如果您有兴趣了解有关使用 Python 创建 PDF 的更多信息,这是一个很好的起点。...结论:在 Python 中创建和修改 PDF 文件 在本教程中,您学习了如何使用PyPDF2和reportlab包创建和修改 PDF 文件。

    16.1K70

    Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...1.2 Series的字符串表现形式为:索引在左边,值在右边。...dataframe中的数据是以一个或者多个二位块存放的(而不是列表、字典或者别的一维数据结构)。 3.索引对象 pandas的索引对象负责管理轴标签和其他元素(比如轴名称等)。...构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index。 Index对象是不可修改的。...操作Series和DataFrame中的数据的基本手段 5.1 重新索引 reindex 5.2 丢弃指定轴上的项 drop 5.3 索引、选取和过滤(.ix) 5.4 算数运算和数据对齐 DataFrame

    5.4K50

    在Python-dataframe中如何把出生日期转化为年龄?

    作者:博观厚积 简书专栏:https://www.jianshu.com/u/2f376f777ef1 我们在做数据挖掘项目或大数据竞赛时,如果个体是人的时候,获得的数据中可能有出生日期的Series...比如这样的一些数: # -*- coding: utf-8 -*- import pandas as pd import numpy as np from pandas import Series, DataFrame...%matplotlib inline data = {'birth': ['10/8/00', '7/21/93', '6/14/01', '5/18/99', '1/5/98']} frame = DataFrame...实际上我们在分析时并不需要人的出生日期,而是需要年龄,不同的年龄阶段会有不同的状态,比如收入、健康、居住条件等等,且能够很好地把不同样本的差异性进行大范围的划分,而不是像出生日期那样包含信息量过大且在算法训练时不好作为有效数据进行训练...当前的年份frame['age']=now_year-frame.birth.dt.yearframe 在这里使用了dt.datetime.today().year来获取当前日期的年份,然后将birth数据中的年份数据提取出来

    2.5K20

    业界使用最多的Python中Dataframe的重塑变形

    pivot pivot函数用于从给定的表中创建出新的派生表 pivot有三个参数: 索引 列 值 def pivot_simple(index, columns, values): """...===== color black blue red item Item1 None 2 1 Item2 4 None 3 将上述数据中的...因此,必须确保我们指定的列和行没有重复的数据,才可以用pivot函数 pivot_table方法实现了类似pivot方法的功能 它可以在指定的列和行有重复的情况下使用 我们可以使用均值、中值或其他的聚合函数来计算重复条目中的单个值...的一种特殊情况 假设我们有一个在行列上有多个索引的DataFrame。...堆叠DataFrame意味着移动最里面的列索引成为最里面的行索引,反向操作称之为取消堆叠,意味着将最里面的行索引移动为最里面的列索引。

    2.9K10

    python中如何修改文件?

    修改的概念:对于硬盘上数据的修改, 根本没有改的操作, 只有覆盖操作修改的流程:文件的修改都是数据加载到内存中, 在内存中修改完再覆盖入硬盘一.修改方式一1.修改过程先以 r 模式打开源文件,将源文件内容全部读入内存然后在内存中完成修改再以...with open('user.txt',mode='r',encoding='utf-8') as f: data=f.read() data=data.replace('python',...'人生苦短,我用python')with open('user.txt',mode='w',encoding='utf-8') as f: f.write(data)二.修改方式二1.修改过程以...r 模式打开源文件,然后以 w 模式打开一个临时文件从源文件中读一行到内存中,修改完毕后直接写入临时文件,循环往复,直到操作完毕所有行删除源文件,将临时文件名改名为源文件名2.使用到 OS 模块import...' in line: line=line.replace('python','人生苦短,我用python') write_f.write(line)#Python小白学习交流群

    1.5K20

    Python库介绍15 DataFrame

    DataFrame是pandas库中另一个重要的数据结构,它提供了类似于excel的二维数据结构使用pandas.DataFrame()函数可以创建一个DataFrame数据类型【用数组创建DataFrame...】import pandas as pdimport numpy as npa=np.random.uniform(0,150,size=(5,3)).astype('int32')df=pd.DataFrame...(a)df我们首先使用random.uniform生成了一个5*3的矩阵a,它的每个元素是0~150的随机数然后用DataFrame()函数把矩阵a转换为DataFrame类型可以看到,在jupyter...中,dataframe的显示非常直观,上面第一行是它的列索引(默认为0,1,2)左边第一列是它的行索引(默认为0,1,2,3,4)中间的区域是我们的数据DataFrame跟series类似,可以使用index...(a,index=line,columns=columns)df【用字典创建DataFrame】pandas还支持字典创建DataFrame字典的键(key)将作为列索引,值(value)将作为一个个数据

    44610
    领券