因为弹窗可以快速吸引用户的注意力,可以快速且准确地传递信息。 回到正题 在大多数游戏中都会有或多或少的弹窗出现,所以在我们游戏开发中,对于弹窗的处理也是必不可少的。...接下来,本篇文章将给大家分享一套我自以为优雅且高效的弹窗管理方案。 ---- 正文 标准化 通常,我们都会希望同一产品中的弹窗风格是一致的,才不会给到用户一种突兀感。...这样一来,在脚本中调用 options 时就会有智能提示了,哎呀针不戳~ 泛型是 TypeScript 的特性之一,很酷!...其实这样做的原因就是为了让 show() 函数可以同步执行,而且还返回了一个枚举类型 PopupShowResult 的值来表示请求结果。 举个栗子?...因为弹窗管理器在加载预制体的时候已经增加了一个引用计数,所以释放时直接相应减少一个引用计数即可。 ⚠️ 但是注意了,对于在弹窗内部逻辑中额外动态加载的资源,需要自行进行计数!
本文以最简单的 TensorAdd 算子为例,向大家展示为 MMCV 贡献算子的全过程,希望能够帮助大家更好地理解 MMCV 算子的 目录结构,以便更高效地贡献算子。...提供 Python 接口 在完成 C++/CUDA 的算子后,我们需要在 mmcv/ops/csrc/pytorch/pybind.cpp 里实现 C++ 接口和 Python 接口的绑定,从而提供一个...Python 可以调用的接口。...Python 调用算子 在 mmcv/ops/ 下添加 tensor_add.py。 1# Copyright (c) OpenMMLab....总结 希望本篇文章让您更为深入地了解了如何在 MMCV 中添加自定义算子,如果对文档有任何疑问或者修改建议,欢迎提交 Issue 或 PR
这个社区是我们在 Python Package Index(PyPI)中提供如此庞大、多样化的软件包的原因,用以扩展和改进 Python。并解决不可避免的问题。...在本系列中,我们将介绍七个可以帮助你解决常见 Python 问题的 PyPI 库。今天,我们将研究 singledispatch,这是一个能让你追溯地向 Python 库添加方法的库。...然而,我们想给库添加一个面积计算。如果我们不会和其他人共享这个库,我们只需添加 area 方法,这样我们就能调用 shape.area() 而无需关心是什么形状。...这保证了如果我们出现一个新的形状时,我们会明确地报错而不是返回一个无意义的结果。...在本系列的下一篇文章中,我们将介绍 tox,一个用于自动化 Python 代码测试的工具。
python在mysql中插入null空值 sql = “INSERT INTO MROdata (MmeUeS1apId) VALUES (%s)”%‘NULL’ %s没有引号,可以将“null”...中null写进数据库,达到NULL值效果。
不过,现在的列表项看起来有点乱,各种语言的框架随机分布在列表项中,不便识别,如果我们想要将同一个语言的 Web 框架都聚集在一起,该怎么做?...计算属性 计算属性从字面意义上理解,就是经过计算后的属性,计算属性可以通过函数来定义,函数体中是该属性的计算逻辑,你可以在 HTML 视图中像调用普通属性一样调用计算属性,Vue 在初次访问该计算属性时...,通过对应函数体计算属性值并缓存起来,以后每次计算属性依赖的普通属性值发生变更,才会重新计算,所以性能上没有问题。...计算属性定义在 Vue 实例的 computed 属性中,我们将上述排序逻辑通过计算属性 sortedFrameworks 来实现,对应的实现代码如下: methods: { addFramework...,需要通过 return 关键字返回计算后的属性值,这里依赖的普通属性是 frameworks。
如何判断某变量是否在某个集合中?注意,这里的集合可能并不是指确定的常量,也可能是变量。
在本文中,我们将探讨四种不同的方法来计算 Python 列表中的唯一值。 在本文中,我们将介绍如何使用集合模块中的集合、字典、列表推导和计数器。...通过使用元素作为键,并将它们的计数作为字典中的值,我们可以有效地跟踪唯一值。这种方法允许灵活地将不同的数据类型作为键处理,并且由于 Python 中字典的哈希表实现,可以实现高效的查找和更新。...方法 4:使用集合模块中的计数器 Python 中的集合模块提供了一个高效而强大的工具,称为计数器,这是一个专门的字典,用于计算集合中元素的出现次数。通过使用计数器,计算列表中的唯一值变得简单。...计数器类具有高效的计数功能和附加功能,使其适用于高级计数任务。在选择适当的方法来计算列表中的唯一值时,请考虑特定于任务的要求,例如效率和可读性。...结论 总之,计算列表中唯一值的任务是 Python 编程中的常见要求。在本文中,我们研究了四种不同的方法来实现这一目标:利用集合、使用字典、利用列表理解和使用集合模块中的计数器。
在云计算环境中,可以通过以下几种方法实现资源的高效分配和调度: 负载均衡:通过负载均衡算法,将云计算集群的负载均匀地分配到各个节点上。常见的负载均衡算法有轮询、最小连接数、最短响应时间等。...资源调度算法:为了高效利用资源,可以采用资源调度算法,将任务分配给最适合执行的资源。常见的资源调度算法有先来先服务、最短作业优先、最高优先权等。...弹性资源管理:根据负载情况,实时动态调整云计算资源的分配。可以通过自动伸缩策略来根据负载情况自动增加或减少资源。...故障容错和备份:通过备份和冗余技术,确保云计算环境中的资源和服务的高可用性和可靠性。当发生故障时,能够快速切换到备份资源。...以上是一些常见的方法,云计算资源的高效分配和调度还需要根据具体的应用场景和需求来进行定制化的设计和实施。
原来我们在 Python 中写日志,使用的是 Python 自带的 logging 模块,要实现既在终端输出,又能写文件,并且日志文件还能 rotate ,代码需要十多行: import logging...当一个函数报错的时候,自动记录日志: from loguru import logger @logger.catch def test(): 'a' + 1 函数报错时,自动记录报错信息到日志中。...每个变量的值都给你标出来了。 使用 loguru 也只需要定义一次格式。...只需要在入口文件定义好格式,在同一个项目中的其他文件中,直接 from loguru import logger logger.info('可以用了') 参考资料 [1] loguru: https:/
author = { "first_name":"Jonathan", "last_name":"Hsu", "username":"jhsu98" } 访问字典值的老(坏)方法 在字典中访问值的传统方法是使用方括号表示法...这种语法将术语的名称嵌套在方括号中,如下所示。...这可能会引发严重的问题,尤其是在处理不可预测的业务数据时。 虽然可以在try/except或if语句中包装我们的语句,但是更适用于叠装字典术语。...这在Python中不起作用。...如果没有定义术语,则返回一个默认值,这样就不必处理异常。 这个默认值可以是任何值,但请记住它是可选的。如果没有包含默认值,则使用Python里空值的等效值None。
参考链接: Python中的复数1(简介) 在二维平面会涉及到两个变量x, y,并且有的时候需要计算两个二维坐标之间的距离,这个时候将二维坐标转化为复数的话那么就可以使用python中的abs绝对值函数对复数取绝对值来计算两个点之间的距离或者是计算复数的模...,当我们将两个复数对应的坐标相减然后对其使用abs绝对值函数那么得到的就是两点之间的距离,对一个复数取绝对值得到的就是复数的模长 if __name__ == '__main__': points...= [[1, 0], [0, 1], [2, 1], [1, 2]] for i in points: print(i) # 使用python中的解包将每个点转换为复数表现形式... points = [complex(*z) for z in points] for i in range(len(points)): # 计算每个复数的模长 ...points[i] = abs(points[i]) print(points) # 比如计算(0, 1) (1, 2)两点之间的距离 point1 = complex(0, 1
stable/reference/generated/numpy.clip.html numpy.clip(a, a_min, a_max, out=None, **kwargs) 下面这段示例代码使用了 Python...的 NumPy 库来实现一个简单的功能:将数组中的元素限制在指定的最小值和最大值之间。...具体来说,它首先创建了一个包含 0 到 9(包括 0 和 9)的整数数组,然后使用 np.clip 函数将这个数组中的每个元素限制在 1 到 8 之间。...对于输入数组中的每个元素,如果它小于最小值,则会被设置为最小值;如果它大于最大值,则会被设置为最大值;否则,它保持不变。...通过合理利用 np.clip 函数,可以方便地对数据进行范围限制操作,这在数据预处理、异常值处理等场景中非常有用。
PDF、CDF、CCDF图的区别 PDF:连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。...PDF与CDF对比示意图 在 Python 中使用scipy.stats.norm.ppf()计算 CDF import numpy as np from scipy.stats import norm...#scipy.stats.norm.ppf(0.95, loc=0,scale=1)返回累积分布函数中概率等于0.95对应的x值(CDF函数中已知y求对应的x)。...') plt.show() ←PDF与CDF分布曲线对比→ Python中计算累积分布函数 利用某设备三种工况条件下监测时间序列数据,对比分析不同工况下设备运行性能差异。...分析概率分布函数曲线可以快速、简明地描述并量化由不同工况下导致的长期电能消耗中的细节差异。 注: 1、数据形式--dataframe # 外部导入数据 DF = pd.read_excel(r".
参考链接: 使用Python进行鼠标和键盘自动化 在计算机上打开程序和进行操作的最直接方法就是,直接控制键盘和鼠标来模仿人们想要进行的行为,就像人们坐在计算机跟前自己操作一样,这种技术被称为“图形用户界面自动化...python界面引入模块 1.2 解决程序出现的错误,及时制止 在开始 GUI 自动化之前,你需要知道如何解决可能发生的问题。...1.2.1 通过任务管理器来关闭程序 windows中可以使用 Ctrl+Alt+Delete键来启动,并且在进程中进行关闭,或者直接注销计算机来阻止程序的乱作为 1.2.2 暂停和自动防故障设置 ...1.4.2 拖动鼠标 拖动即移动鼠标,按着一个按键不放来移动屏幕上的位置,例如:可以在文件夹中拖动文件来移动位置,或者将文件等拉入发送框内相当于复制粘贴的操作 pyautogui提供了一个pyautogui.dragTo...1.5.2 分析屏幕快照 假设你的 GUI 自动化程序中,有一步是点击蓝色选项。
Python 自带的多进程库 multiprocessing 可实现多进程。我想用这些短例子示范如何优雅地用多线程。中文网络上,有些人只是翻译了旧版的 Python 官网的多进程文档。...用处:进行高性能计算。只有多进程方案设计合理,才能加速计算。 2. 全局锁与多进程 为何在 Python 里用多进程这么麻烦?...共享值 Value 共享数组 Array 共享内容 shared_memory(Python 3.6 Python3.9 的新特性,还不太成熟)下面开讲。...': run__pool() 5.管道 Pipe 顾名思义,管道 Pipe 有两端,因而 main_conn, child_conn = Pipe() ,管道的两端可以放在主进程或子进程内,我在实验中没发现主管道口...因而顺便写【在 Python 中优雅地用多进程】这篇东西。
(pyCharm)中如果不能调出交互窗口则无法进行点击,可以在命令窗口下成功执行。...= imhist.cumsum() # 累计分布函数 # 归一化 cdf = 255 \* cdf / cdf[-1] # 使用累积分布函数进行线性插值,计算新的像素值 img2...在图像中,正导数显示为亮的像素,负导数显示为暗的像素,灰色区域表示导数的值接近零。...上面计算图像导数的方法存在缺陷:在该方法中,滤波器的尺度需要随着图像分辨率的变化而变化(?)。...之后有空将补充图像去噪 **参考书籍** Python计算机视觉
) print(b) # [1, 2, 3, 5] print(One.get_list()) # [1, 2, 3, 5] 解决方法:调用One.get_copy_list() 在flask...中,知识点:一个请求 在进入到进程后,会从进程 App中生成一个新的app(在线程中的应用上下文,改变其值会改变进程中App的相关值,也就是进程App的指针引用,包括g,),以及生成一个新的请求上下文(...并把此次请求需要的应用上下文和请求上下文通过dict格式传入到 栈中(从而保证每个请求不会混乱)。并且在请求结束后,pop此次的相关上下文。...错误接口代码大致如下: class 响应如下(每次请求,都会向model类的列表属性值添加元素,这样会随着时间的增长导致内存消耗越来越大,最终导致服务崩溃): ?...总结:刚开始以为 在一次请求过程中,无论怎么操作都不会影响到其他请求的执行,当时只考虑了在 请求上下文中不会出现这种问题,但是 应用上下文,是 进程App相关属性或常量的一个引用(相当于指针),任何对应用上下文中的改变
如果想让键映射到多个值,需要将这多个值保存到另一个容器(列表、集合、字典等)中。...你可以很方便地使用 collections 模块中的 defaultdict 来构造这样的字典。...如果你并不需要这样的特性,你可以在一个普通的字典上使用 setdefault() 方法来代替。...因为每次调用都得创建一个新的初始值的实例(例子程序中的空列表 [] )。 讨论 一般来说,构建一个多值映射字典是很容易的。但是如果试着自己对第一个值做初始化操作,就会变得很杂乱。...Cookbook》第三版 http://python3-cookbook.readthedocs.org/zh_CN/latest/
在平常的使用中,绘制图像的轮廓也经常被使用,因为绘制轮廓需要对每个坐标(x, y)的像数值施加同一个阙值,所以需要将图像灰度化 from PIL import Image import matplotlib.pyplot...直方图均衡化的变换函数是图像中像素值的累积分布函数(cumulative distribution function,将像素值的范围映射到目标范围的归一化操作)。...= imhist.cumsum() # 累计分布函数 # 归一化 cdf = 255 * cdf / cdf[-1] # 使用累积分布函数进行线性插值,计算新的像素值...在图像中,正导数显示为亮的像素,负导数显示为暗的像素,灰色区域表示导数的值接近零。 上面计算图像导数的方法存在缺陷:在该方法中,滤波器的尺度需要随着图像分辨率的变化而变化(?)。...之后有空将补充图像去噪 参考书籍 Python计算机视觉
四、无标度网络 原文:Chapter 4 Scale-free networks 译者:飞龙 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 在本章中,我们将处理来自在线社交网络的数据...在 WS 模型中,大多数用户有大约 44 个朋友;最小值是 38,最大值是 50。这个变化不大。在数据集中,有很多用户只有 1 或 2 个朋友,但有一个人有 1000 多个!...像这样的分布,有许多小的值和一些非常大的值,被称为重尾。 4.4 重尾分布 图 4.2:Facebook 数据集和 WS 模型中的度的 PMF,在双对数刻度下。...if value<=x] return sum(ps) 例如,给定数据集中的度的分布,pmf_pf,我们可以计算好友数小于等于 25 的比例: >>> cumulative_prob(pmf_fb...我们可以使用另一个数据视图,更清楚地观察数据:在对数坐标上绘制互补 CDF。
领取专属 10元无门槛券
手把手带您无忧上云