首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python3 OpenCV4 计算机视觉学习手册:1~5

在本书中,您将学习利用 Python 编程语言来利用 OpenCV 的巨大潜力。 Python 是一种优雅的语言,具有相对较浅的学习曲线和非常强大的功能。...给定两个摄像机输入流(或可选地,预录制的视频输入),应用会将一个流中的人脸叠加在另一个流中的人脸之上。 将应用过滤器和变形以使此混合场景具有统一的外观。...但是,如果您对这些@注解(例如@property)感到困惑,请参阅有关decorators的 Python 文档,该语言是该语言的内置功能,允许通过另一个函数包装一个函数 ,通常用于在应用的多个位置应用用户定义的行为...使用几种不同的人脸识别算法:EigenFace,Fisherfaces 和本地二进制模式直方图(LBPH)。 使用或不使用遮罩,将矩形区域从一个图像复制到另一个图像。...我们要使用与源矩形具有相同尺寸的给定遮罩。 我们将仅复制源矩形中掩码值不为零的那些像素。 其他像素应保留目标图像中的旧值。

4.2K20

人脸识别的原理——这样学习最简单(文末有免费送书活动)

将这些特征组合成特征模板,特征模板内有白色和黑色两种矩形,并定义该模板的特征值为白 色矩形像素之和减去黑色矩形像素之和。...图 1     扩展后的 Haar 特征     Haar 特征的提取简单来说就是通过不断改变模板的大小、位置和类型,将白色矩形区域 像素之和减去黑色矩形区域像素之和,从而得到每种类型模板的大量子特征...,且同一个像素点如果被包含在不同的矩形中会被重复遍 历多次。...我们通过图 2 所示的积分原图可以更好地理解这个概念,因 此如果需要计算图像中任意矩形区域的面积,就不需要遍历区域 内的所有像素点。...文末赠书 OpenCV 4详解教程,基于Python语言实现,剖析利用OpenCV 4进行图像处理的基本操作,配合项目实战,真实应用场景,附赠源代码、讲解视频及PPT。

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python OpenCV 计算机视觉:1~5

    ---- 将 Homebrew 与您自己的自定义包一起使用 Homebrew 使编辑现有包定义变得容易: $ brew edit opencv 包定义实际上是 Ruby 编程语言中的脚本。...具体来说,我们的应用将执行实时面部合并。 给定两个摄像机输入流(或可选地,预录制的视频输入),应用会将一个流中的人脸叠加在另一个流中的人脸之上。 将应用过滤器和变形以使混合场景具有统一的外观。...每当我们要保持图像的整体亮度不变时,都应该是这种情况。 如果我们稍微修改锐化核,使其权重总和为0,则我们有一个边缘检测核,该边缘会将边缘变为白色,将非边缘变为黑色。...接下来,Cameo 必须支持将一个矩形的内容复制到另一个矩形。 我们可以使用 Python 的切片符号在图像内读取或写入矩形。...我们要使用与源矩形具有相同尺寸的给定遮罩。 我们将仅复制源矩形中掩码值不为零的那些像素。 其他像素应保留目标图像中的旧值。

    2.7K20

    使用OpenCV实现图像覆盖

    每张图像都包括RGB三个通道,分别代表红色、绿色和蓝色,使用它们来定义图像中任意一点的像素值,红绿蓝的值在0-255之间。...,比如更改为[0,0,0],这部分区域将变成黑色,因为这是颜色为黑色的像素值。...可以使用pip install numpy命令安装它。 numpy提供了一个函数numpy.dstack() 来根据深度叠加值。 首先,我们需要一个与图像大小相同的虚拟数组。...我们只需要替换那些具有非零值的像素值。为了做到这一点,我们可以通过检查每个像素值和替换非零值来强行执行,但这很耗时。 这里有一个更好的方法。我们可以获取要覆盖图像的alpha值。...image_1 和image_3的alpha之和需要等于255。因此,我们可以创建另一个数组,其中包含和等于255的所需alpha值。

    4.9K21

    使用Python+OpenCV+dlib为人脸生成口罩

    目前,可用于训练和评估人脸识别系统的图像数据集是有限的。据报道,美国国家标准与技术研究所(NIST)的研究通过将口罩(各种颜色、大小和位置)叠加在没有带口罩人脸的图像上来解决这个问题。...这个库是用C++编程语言创建的,它可以使用C/C++、Python和java等语言。 导入库 我们从导入所需的库开始:OpenCV、dlib、numpy、os和imutils。...# 初始化dlib的人脸检测器 detector = dlib.get_frontal_face_detector() """ 在灰度图像中检测人脸并创建一个对象-存储边界矩形的坐标列表 第二个参数中的...当与另一个产生不同对齐框的人脸检测器(如基于CNN的mmod_human_face_detector.dat )一起使用时,结果不会很好。...图5显示了原始输入图像(Barack Obama的图像)与使用脚本生成了口罩的输出图像之间的比较。我们也可以在人群镜头使用这个脚本。

    1.9K11

    二.OpenCV和Numpy读取修改像素、几何图形绘制

    Python图像处理基础知识,这篇文章将讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素。....绘制直线 在OpenCV中,绘制直线需要获取直线的起点和终点坐标,调用cv2.line()函数实现该功能。...---- 2.绘制矩形 在OpenCV中,绘制矩形通过cv2.rectangle()函数实现,该函数原型如下所示: img = rectangle(img, pt1, pt2, color[, thickness...表示边框的粗细 – lineType表示线条的类型 – shift表示点坐标中的小数位数 下面的代码是绘制一个矩形,通过np.zeros()创建一幅黑色图像,接着调用cv2.rectangle()绘制矩形...数字图像处理与机器视觉——Visual C++与Matlab实现. [6]网易云课堂_高登教育. Python+OpenCV图像处理

    2.4K20

    图像处理智能化的探索:人脸识别裁图

    ,一个接口也就要吐出好几个尺寸的图片供客户端使用。...比如我们常见的RGB通道的图片,每一个像素都包含红(R)、绿(G)、蓝(B)三个通道,每个通道都由一个八位的二进制数来表示灰度值,可以算出这个灰度值的范围位0~255(2^8 - 1)。...我们可以把这些矩形当作提取图片特征的过滤器,当你把某个矩形套在图片的某个区域上,你会发现这块区域中有一部分像素落在了矩形的白色区域里,另一部分落在黑色区域。...然后我们用白色区域的像素和减去黑色区域的像素和,得到的结果便是该图片区块的“特征”。...这样做的好处是在最初的检测中便可过滤掉大部分不属于人脸的对象,从而无需对所有特征区块都做一遍计算,大大降低了计算时间。 3.2 Python实现 好了,终于可以进入正题了。

    1.6K30

    总结 | 基于OpenCV提取特定区域方法汇总

    今天我们将一起探究如何使用OpenCV和Python从图像中提取感兴趣区域(ROI)。 在之间的文章中,我们完成了图像边缘提取,例如从台球桌中提取桌边。...本练习的目标图像包含四个大脑图 从上面的图像中,我们只想提取与四个地图(头部扫描)相对应的区域,而将其他所有内容都排除在外。因此,让我们开始吧。 第一步是检测我们要提取的片段的边缘。...这是一个多步骤过程,如下所述: 1. 使用“ cvtColor()”将RGB图像转换为灰度 2. 通过应用模糊函数“ GaussianBlur()”来消除灰度图像中的噪声 3....使用非极大抑制可以解决此问题,即我们查看所有重叠的轮廓,然后选择面积最大的轮廓作为最终候选轮廓。逻辑非常简单,因此我们不需要任何内置的OpenCV或Python函数。...m00”]),int(M [“ m01”] / M [“ m00”])) 将线段质心坐标与图像中心坐标进行比较,可以将四个线段分别放置在各自的位置。

    4.2K20

    如何用OpenCV在Python中实现人脸检测

    选自towardsdatascience 作者:Maël Fabien 机器之心编译 参与:高璇、张倩、淑婷 本教程将介绍如何使用 OpenCV 和 Dlib 在 Python 中创建和运行人脸检测算法...Haar 特征 在上图中,第一个特征测量眼部和上脸颊之间的强度差异。特征值计算的方法很简单,对黑色区域中的像素求和再减去白色区域中的像素即可。 然后,将这个矩形作为卷积核作用到整个图像。...积分图像的作用是仅使用四个值简单地计算矩形和。我们来看看它是如何工作的! 假设我们想要确定一个坐标为 (x,y) 的给定像素的矩形特征。然后,像素的积分图像是给定像素的上方和左侧的像素之和。 ?...级联分类器 虽然上述过程非常有效,但仍存在一个重大问题。在图像中,大部分图像为非面部区域。对图像的每个区域给予等同的注意力是没有意义的,因为我们应该主要关注最有可能包含人脸的区域。...实际上,我们应用了一个简单的线性变换,而不是每个像素用三个点来描述红、绿、蓝。 ? 这在 OpenCV 中是默认实现的。

    1.5K30

    OpenCV 入门之旅

    : “ 为每种原色形成一个矩阵,然后这些矩阵组合起来为各个 R、G、B 颜色提供像素值,然后矩阵的每个元素提供与像素亮度强度有关的数据” 文字有些抽象,我们来看下面这张图片 如图所示,此处图像的大小可以计算为...,包括 Windows、Linux 和 MacOS OpenCV Python 只不过是与 Python 一起使用的原始 C++ 库的包装类,所有 OpenCV 数组结构都会被转换为 NumPy 数组...NumPy ndarray 的行和列值,这是带有人脸矩形坐标的数组 第 3 步:使用矩形人脸框显示图像 首先,我们创建一个 CascadeClassifier 对象来提取人脸的特征,参数就是包含面部特征的...下面我们看看如何使用 OpenCV 做一个非常有趣的运动检测器 基于 OpenCV 的运动检测器 问题场景:通过一个网络摄像头,可以检测到摄像头前任何运动物体,并且返回一个图表,这个图表包含人/物体在相机前面的时间...while 循环遍历视频的各个帧,我们将彩色帧转换为灰度图像,然后将此灰度图像转换为高斯模糊模型 我们使用 if 语句来存储视频的第一个图像 接下来我们继续深入 我们使用 absdiff 函数来计算第一个出现的帧与所有其他帧之间的差异

    2K11

    opencv+Recorder︱OpenCV 中使用 Haar 分类器进行面部检测

    每一个特征是一个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和 ? 使用所有可能的核来计算足够多的特征。 (想象一下这需要多少计算量?...仅仅是一个 24x24 的窗口就有 160000 个特征)。对于每一个特征的计算我们好需要计算白色和黑色矩形内的像素和。...我们要选取错误率最低的特征,这说明它们是检测面部和非面部图像最好的特征。(这个过程其实不像我们说的这么简单。在开始时每一张图像都具有相同的权重,每一次分类之后,被错分的图像的权重会增大。...为了达到这个目的作者提出了级联分类器的概念。不是在一开始就对窗口进行这 6000 个特征测试,将这些特征分成不同组。在不同的分类阶段逐个使用。(通常前面很少的几个阶段使用较少的特征检测)。.... ---- 二、OpenCV 中的 Haar 级联检测 OpenCV 自带了训练器和检测器。如果你想自己训练一个分类器来检测汽车,飞机等的话,可以使用 OpenCV 构建。

    1K20

    基于OpenCV的特定区域提取

    今天我们将一起探究如何使用OpenCV和Python从图像中提取感兴趣区域(ROI)。 在之间的文章中,我们完成了图像边缘提取,例如从台球桌中提取桌边。...从上面的图像中,我们只想提取与四个地图(头部扫描)相对应的区域,而将其他所有内容都排除在外。因此,让我们开始吧。 第一步是检测我们要提取的片段的边缘。这是一个多步骤过程,如下所述: 1....面积大于某个阈值(在此示例中,值7000可以正常工作)。 对于第一部分,我们将使用OpenCV的“ boundingRect()”检测每个轮廓的边界矩形,并检查纵横比(高宽比)是否接近1。...使用非极大抑制可以解决此问题,即我们查看所有重叠的轮廓,然后选择面积最大的轮廓作为最终候选轮廓。逻辑非常简单,因此我们不需要任何内置的OpenCV或Python函数。...m00”]),int(M [“ m01”] / M [“ m00”])) 将线段质心坐标与图像中心坐标进行比较,可以将四个线段分别放置在各自的位置。

    2.9K30

    OpenCV: 分水岭算法的图像分割及Grabcut算法交互式前景提取

    目标 在本章中,将学习 使用分水岭算法实现基于标记的图像分割 函数:cv2.watershed() 理论 任何灰度图像都可以看作是一个地形表面,其中高强度的像素表示山峰,低强度表示山谷。...在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,...然后在下一次迭代中,将获得更好的结果。 见下图。第一位球员和足球被封闭在一个蓝色矩形中。然后用 白色笔触(表示前景)和黑色笔触(表示背景) 进行一些最终修饰,最终得到了一个不错的结果。...模式应该是cv2.GC_INIT_WITH_RECT,这是因为使用的是矩形。然后运行grabcut。它修改蒙版图像。在新的蒙版图像中,像素将被标记为四个标志,表示上面指定的背景/前景。...在那里,提供了一些 0 像素的修饰(当然是背景)。因此,正如现在所说的那样,修改了之前案例中的结果掩码。 实际做的是,在绘画应用程序中打开输入图像并为图像添加了另一个图层。

    1K20

    python3之成像库pillow

    ,如RGB有三个通道,而灰度图像则只有一个通道 图像实际上是像素数据的矩形图,图像的模式定义了图像中像素的类型和深度,它在图像中定义mode模式的概念,如: 1:1位像素,表示黑和白,占8bit,在图像表示中称为位图...(0,0),坐标值表示像素的角,它实际上位于(0.5,0.5);python中坐标通常以2元组(X,Y)的形式传递,矩形表示为4元组(l_x,t_y,r_x,b_y),X轴从左到右,Y轴从上到下,顺序是从左上右下表示...,从左上角开始,如一个800X600像素的图像矩形表示为(0,0,800,600),它实际上时左上角锁定,向右下延伸的。...,并返回包含较暗值的新图像 IC.difference(image1,image2):返回两个图像之间差异的绝对值 IC.multiply(image1,image2):将两个图像叠加在一起。...如果将图像与纯黑色图像相乘,则结果为黑色。

    1.5K20

    如何用OpenCV在Python中实现人脸检测

    选自towardsdatascience 本教程将介绍如何使用 OpenCV 和 Dlib 在 Python 中创建和运行人脸检测算法。同时还将添加一些功能,以同时检测多个面部的眼睛和嘴巴。...Haar 特征 在上图中,第一个特征测量眼部和上脸颊之间的强度差异。特征值计算的方法很简单,对黑色区域中的像素求和再减去白色区域中的像素即可。 然后,将这个矩形作为卷积核作用到整个图像。...积分图像的作用是仅使用四个值简单地计算矩形和。我们来看看它是如何工作的! 假设我们想要确定一个坐标为 (x,y) 的给定像素的矩形特征。然后,像素的积分图像是给定像素的上方和左侧的像素之和。 ?...级联分类器 虽然上述过程非常有效,但仍存在一个重大问题。在图像中,大部分图像为非面部区域。对图像的每个区域给予等同的注意力是没有意义的,因为我们应该主要关注最有可能包含人脸的区域。...实际上,我们应用了一个简单的线性变换,而不是每个像素用三个点来描述红、绿、蓝。 ? 这在 OpenCV 中是默认实现的。

    1.5K20

    VC++中使用OpenCV进行形状和轮廓检测

    VC++中使用OpenCV进行形状和轮廓检测 在VC++中使用OpenCV进行形状和轮廓检测,轮廓是形状分析以及物体检测和识别的有用工具。...如下面的图像中Shapes.png中有三角形、矩形、正方形、圆形等,我们如何去区分不同的形状,并且根据轮廓进行检测呢?...1、首先我们对原始图像进行预处理,将原始图形灰度化、高斯模糊、Canny边缘检测、膨胀化处理,最后得到一副膨胀的图形 2、基于这幅膨胀的图像,我们调用findContours函数从膨胀化的二值图像中检索出所有的轮廓...,结果放到vector> contours数组中 3、遍历每一个轮廓多边形,首选计算轮廓面积,过滤那些面积特别小的轮廓(比如面积小于1000则不处理,例如上图中的那个黑色的圆点...),消除噪声;计算轮廓周长(封闭的或者非封闭的)或曲线长度,以指定精度逼近多边形曲线,计算顶点集合或灰度图像的非零像素的右上边界矩形,获取边界包围盒;然后轮廓多边形的角落(顶点)个数objCor,根据objCor

    51100

    经典的计算机视觉项目–如何在视频中的对象后面添加图像

    总览 在移动物体后面添加图像是经典的计算机视觉项目 了解如何使用传统的计算机视觉技术在视频中添加logo 介绍 一位同事带来了一个挑战-建立一个计算机视觉模型,该模型可以在视频中插入任何图像而不会扭曲移动的对象...使用Python和OpenCV构建了此计算机视觉系统-并在本文中分享了方法。 在本文中,将使用图像处理概念和OpenCV。...这些数组的值是像素值,每种颜色都有自己的像素值。因此将以某种方式将应该与矩形重叠的矩形的像素值设置为1(在图5中),而将矩形的其余像素值保持不变。 在图6中,用蓝色虚线包围的区域是放置矩形的区域。...还将R的所有像素值都设置为1。但是将整个粉红色圆圈的像素值保持不变: ? 下一步是将矩形的像素值与R的像素值相乘。由于将任何数字乘以1都会得到该数字本身,因此R的所有那些像素值1都将由矩形的像素替换。...类似地,矩形的像素值为1将被图6的像素替换。最终的输出结果如下所示: ? 这是将用于在视频中跳舞的家伙后面嵌入OpenCVlogo的技术。开始做吧! 在Python中实现该技术-添加logo!

    2.9K10

    基于OpenCV的气体泵扫描仪数字识别系统

    图像阈值化的基本思想是将图像转换为灰度,然后说灰度值小于某个常数的任何像素,则该像素为一个值,否则为另一个。最后,您得到的二进制图像只有两种颜色,在大多数情况下只是黑白图像。...侵蚀出来的数字 反转图像 在尝试在图像中查找轮廓之前,我们需要反转颜色,因为该findContours方法将找到白色的连接部分,而当前的数字是黑色。...k-NN工作原理的基础是,我们将以黑白方式加载每个图像,将该图像存储在每个像素处于打开或关闭状态的数组中,然后将这些打开/关闭像素与特定的数字相关联。...然后,当我们要预测一个新图像时,它将找出哪个训练图像与这些像素最匹配,然后向我们返回最接近的值。 整理好数字后,将创建一个新的脚本,该脚本将遍历这些文件夹,获取每个图像并将该图像与数字关联。...在大多数此类应用程序的Python示例中,分类被写入两个文件,一个包含分类,另一个包含该分类的图像内容。通常使用NumPy和标准文本文件完成此操作。

    6010

    Python 数据科学入门教程:OpenCV

    视频中的每个图片和帧都会像这样分解为像素,并且像边缘检测一样,我们可以推断,边缘是基于白色与黑色像素对比的地方。...四、图像操作 在 OpenCV 教程中,我们将介绍一些我们可以做的简单图像操作。 每个视频分解成帧。 然后每一帧,就像一个图像,分解成存储在行和列中的,帧/图片中的像素。...五、图像算术和逻辑运算 欢迎来到另一个 Python OpenCV 教程,在本教程中,我们将介绍一些简单算术运算,我们可以在图像上执行的,并解释它们的作用。...十一、模板匹配 欢迎阅读另一个 Python OpenCV 教程,在本教程中,我们将介绍对象识别的一个基本版本。 这里的想法是,给出一定的阈值,找到匹配我们提供的模板图像的相同区域。...另一个选择就是使用另一个模板图像。 有时候,使用相同对象的多个图像是有用的。 这样,你可以使阈值足够高的,来确保你的结果准确。 在下一个教程中,我们将介绍前景提取。

    1.4K10
    领券