首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在MNIST数据集上使用Pytorch中的Autoencoder进行维度操作

    这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...然后该表示通过解码器以重建输入数据。通常,编码器和解码器将使用神经网络构建,然后在示例数据上进行训练。 但这些编码器和解码器到底是什么? ?...用于数据加载的子进程数 每批加载多少个样品 准备数据加载器,现在如果自己想要尝试自动编码器的数据集,则需要创建一个特定于此目的的数据加载器。...此外,来自此数据集的图像已经标准化,使得值介于0和1之间。 由于图像在0和1之间归一化,我们需要在输出层上使用sigmoid激活来获得与此输入值范围匹配的值。...由于要比较输入和输出图像中的像素值,因此使用适用于回归任务的损失将是最有益的。回归就是比较数量而不是概率值。

    3.5K20

    在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

    在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。 合并DF Pandas 使用 .merge() 方法来执行合并。...我们可以使用参数‘on’参数指定根据哪列进行合并。...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。 上图描绘了操作所花费的时间(以毫秒为单位)。...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。

    2K50

    在 Pandas 中使用 Merge、Join 、Concat合并数据的效率对比

    来源:Deephub Imba本文约1400字,建议阅读15分钟在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。...合并DF Pandas 使用 .merge() 方法来执行合并。...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。 上图描绘了操作所花费的时间(以毫秒为单位)。...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。 编辑:王菁 校对:林亦霖

    1.4K10

    PyTorch入门:(四)torchvision中数据集的使用

    【小土堆】时记录的 Jupyter 笔记,部分截图来自视频中的课件。...dataset的使用 在 Torchvision 中有很多经典数据集可以下载使用,在官方文档中可以看到具体有哪些数据集可以使用: image-20220329083929346.png 下面以CIFAR10...数据集为例,演示下载使用的流程,在官方文档中可以看到,下载CIFAR10数据集需要的参数: image-20220329084051638.png root表示下载路径 train表示下载数据为数据集还是训练集.../dataset_CIFAR10\cifar-10-python.tar.gz 98.7% Files already downloaded and verified 可以看到在终端中会显示正在下载,...输出后,在终端中输入命令启动tensorboard,然后可以查看图片: image-20220329090029786.png dataloader的使用 主要参数: image-20220329090711388

    69020

    在PyTorch中构建高效的自定义数据集

    PyTorch使您可以自由地对Dataset类执行任何操作,只要您重写改类中的两个函数即可: __len__ 函数:返回数据集大小 __getitem__ 函数:返回对应索引的数据集中的样本 数据集的大小有时难以确定...测试集的一种方法是为训练数据和测试数据提供不同的data_root,并在运行时保留两个数据集变量(另外还有两个数据加载器),尤其是在训练后立即进行测试的情况下。...如果您想从训练集中创建验证集,那么可以使用PyTorch数据实用程序中的random_split 函数轻松处理这一问题。...至少子数据集的大小从一开始就明确定义了。另外,请注意,每个数据集都需要单独的DataLoader,这绝对比在循环中管理两个随机排序的数据集和索引更干净。...您可以在我的GitHub上找到TES数据集的代码,在该代码中,我创建了与数据集同步的PyTorch中的LSTM名称预测变量(https://github.com/syaffers/tes-names-rnn

    3.6K20

    优化在 SwiftUI List 中显示大数据集的响应效率

    创建数据集 通过 List 展示数据集 用 ScrollViewReader 对 List 进行包裹 给 List 中的 item 添加 id 标识,用于定位 通过 scrollTo 滚动到指定的位置...使用了 id 修饰符相当于将这些视图从 ForEach 中拆分出来,因此丧失了优化条件。 总之,当前在数据量较大的情况下,应避免在 List 中对 ForEach 的子视图使用 id 修饰符。...由于 id 修饰符并非惰性修饰符( Inert modifier ),因此我们无法在 ForEach 中仅为列表的头尾数据使用 id 修饰符。...生产中的处理方式 本文为了演示 id 修饰符在 ForEach 中的异常状况以及问题排查思路,创建了一个在生产环境中几乎不可能使用的范例。...如果在正式开发中面对需要在 List 中使用大量数据的情况,我们或许可以考虑下述的几种解决思路( 以数据采用 Core Data 存储为例 ): 数据分页 将数据分割成若干页面是处理大数据集的常用方法,

    9.3K20

    使用ScottPlot库在.NET WinForms中快速实现大型数据集的交互式显示

    前言 在.NET应用开发中数据集的交互式显示是一个非常常见的功能,如需要创建折线图、柱状图、饼图、散点图等不同类型的图表将数据呈现出来,帮助人们更好地理解数据、发现规律,并支持决策和沟通。...本文我们将一起来学习一下如何使用ScottPlot库在.NET WinForms中快速实现大型数据集的交互式显示。...ScottPlot类库介绍 ScottPlot是一个免费、开源(采用MIT许可证)的强大.NET交互式绘图库,能够轻松地实现大型数据集的交互式显示。...使用几行代码即可快速创建折线图、柱状图、饼图、散点图等不同类型的图表。...tickGen.IntegerTicksOnly = true; //告诉我们的自定义刻度生成器使用新的标签格式化程序 tickGen.LabelFormatter

    53610

    SAS进阶《深入解析SAS》之对多数据集的处理

    SAS进阶《深入解析SAS》之对多数据集的处理 1. 数据集的纵向串接: 数据集的纵向串接指的是,将两个或者多个数据集首尾相连,形成一个新的数据集。...据集的横向合并: 数据集的横向合并,指的是将两个或者多个数据集根据某种原则横向合并起来,形成新的数据集。 2. 数据集的纵向串接两种方法:1)使用SAS DATA步的SET语句。...数据集的横向合并使用MERGE的两种情况: 不使用BY语句合并,也称为一对一合并。...2)使用UPDATA语句时必须使用BY语句;MERGE语句在不使用BY语句时也可以按观测号进行一对一合并。...2)在处理缺失值时,UPDATA语句可以控制是否用缺失值对主数据集进行替换;MERGE语句中后一数据集中的缺失值一定能会覆盖前一数据集中的值。

    1.6K80

    在C#下使用TensorFlow.NET训练自己的数据集

    今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理...实际使用中,如果你们需要训练自己的图像,只需要把训练的文件夹按照规定的顺序替换成你们自己的图片即可。...具体每一层的Shape参考下图: 数据集说明 为了模型测试的训练速度考虑,图像数据集主要节选了一小部分的OCR字符(X、Y、Z),数据集的特征如下: · 分类数量:3 classes 【X...我们在会话中运行多个线程,并加入队列管理器进行线程间的文件入队出队操作,并限制队列容量,主线程可以利用队列中的数据进行训练,另一个线程进行本地文件的IO读取,这样可以实现数据的读取和模型的训练是异步的,...完整代码可以直接用于大家自己的数据集进行训练,已经在工业现场经过大量测试,可以在GPU或CPU环境下运行,只需要更换tensorflow.dll文件即可实现训练环境的切换。

    1.5K20

    一步确定你的基因集在两个状态中是否显著的一致差异

    GSEA(Gene Set Enrichment Analysis,基因集富集分析)是一个计算方法,用来确定某个基因集在两个生物学状态中(疾病正常组,或者处理1和处理2等)是否具有显著的一致性差异。...ssize:每个研究中样本数量的数值向量。 gind:基因是否包括在研究中的0-1矩阵(1-包含,行-基因,列-研究)。...1.特定基因集在两个生物学状态中是否具有显著的一致性差异 set.seed(1234) expr=read.table("expr.txt",as.is=T,header=T,sep="\t",row.names...geneInSample[7:15,1]=0 #某种状态不包含所有基因 igsea.test(expr,condition[,],sampleNum,geneInSample,geneInSet) 结果显示某个基因集在癌常对照中具有显著的一致性差异...小编总结 GSEA网站打不开或者不方便Download应用程序,又或者我只想看看我的基因集在癌常状态中是否显著差异,那你可要试试今天的iGSEA。

    92530

    ThreadLocal与线程池在使用中可能会出现的两个问题

    直接线程池中获取主线程或非线程池中的ThreadLocal设置的变量的值 例如 private static final ThreadPoolExecutor syncAccessPool =...null 解决办法:真实使用中相信大家不会这么使用的,但是我出错主要是因为使用了封装的方法,封装的方法中使用了ThreadLocal,这种情况下要先从ThreadLocal中获取到方法中,再设置到线程池...线程池中使用了ThreadLocal设置了值但是使用完后并未移除造成内存飙升或OOM public class ThreadLocalOOM { static class LocalVariable...jconsole程序观察到的内存变化为 在使用完之后remove之后的内存变化 public static void main(String[] args) throws InterruptedException...这个原因就是没有remove,线程池中所有存在的线程都会持有这个本地变量,导致内存暴涨。

    1.4K20

    Python 大数据集在正态分布中的应用(附源码)

    前言 在阅读今天分享的内容之前,我们先来简单了解下关于数学中的部分统计学及概率的知识。...通过下图所示,可初步了解下正态分布图的分布状况。 图中所示的百分比即数据落入该区间内的概率大小,由图可见,在正负一倍的sigmam 内,该区间的概率是最大的。...、all_data_list:数据列表,相当于Python中的list (4)、singal_data:all_data_list中的单个元素 下图为 excel 中的大量数据集: 重点代码行解读 Line3...-6:读取 excel 表中每列数据并转成 list 集合 Line7:删除 excel 中每列最后一行的值 Line9-10:判断如果某列的值完全一样,则赋值一个固定的字符串,供调用方判断时使用 Line12...Line25-30:利用前面所讲到的公式求出箱型图中上下边缘的值,也是该方法的终极目的 使用方法 调用方在调用该函数时只需按规则传入对应的参数,拿到该方法返回的上下边缘值对页面上返回的数据进行区间判断即可

    1.8K20

    SAS hash对象,提高编程效率和性能

    因此,在使用SAS hash对象之前,需要评估数据集的大小和可用内存的情况。 SAS hash对象如何使用?...使用defineKey方法来定义一个或多个键变量,用于匹配两个数据集中的观测值 。 使用defineData方法来定义要从合并或拼接的数据集中保留的变量 。...使用defineDone方法来完成hash对象的定义 。 使用find方法来在hash对象中查找与当前数据步骤中的键变量相匹配的观测值 。 使用output方法来输出合并或拼接后的结果数据集 。...下面是一个使用hash对象来合并两个数据集的例子: data one; input id name $; datalines; 1 Alice 2 Bob 3 Carol 4 David ; run...one数据集*/ rc=h.find(); /*在hash对象中查找与id相匹配的score*/ output; /*输出结果数据集*/ run; 总结 SAS hash对象是一种值得学习和掌握的编程技术

    68420

    【SAS Says】基础篇:6. 开发数据(二)

    6.2 使用set语句堆叠数据 ? 运用set语句可以把一个数据集堆在另一个数据集上,如上图所示,适用于两个变量相同的两个数据集。...(2)之后在data语句中对新SAS数据集命名。 (3)再使用merge语句列出要合并的数据集名。使用BY语句说明共同变量。...在进行合并之前,仍然要对两个数据集按照匹配变量进行排序。其他注意与6.4差不多。 例子 有一份关于鞋子打折的数据,其中训练鞋、跑步鞋、走路鞋的折扣各不同。第一份数据是关于鞋子的风格、类型、价格。...区别在于,后者适用于数据步中的所有变量,而前者仅使用与语句前面的那个数据集。而且,后者仅可以在数据步中使用,而前者除了数据步和过程步,还可以在输入和输出数据集中使用。...SAS通常在数据步结尾将一个观测值写入数据中,但可以写入多个观测值,在DO loop中或单独使用output语句。

    2.2K30

    【学习】七天搞定SAS(五):数据操作与合并

    数据集操作永远是逃不掉的问题,最简单的就是两个数据集的合并——当然不是简简单单的行列添加,按照某一主键或者某些主键合并才是最常用的。在SAS中,要熟悉的就是SET这个声明,可以用改变数据集等等。...SET还可以进一步结合BY对数据排序: image.png 这样返回的结果就是按照PassNumber排序的了: SAS一对一合并数据集 类似于SQL的join和R的merge,SAS也可以合并数据集...SAS里面拆分数据 在读入数据的时候,SAS还可以自动按照某些条件把其拆分为两个数据集,这里需要调用OUTPUT声明。...image.png 得到的就是两个数据集(虽然我们读入的只有一个...你也可以理解为生成了两个原数据集的子集): 这里就类似于R里面的split()函数了。...WHERE的用法也可以稍稍赘述一下: image.png 这样得到的结果为: SAS中数据的转置:TRANSPOSE 数据的转置有时候也是逃不掉的。

    2.3K110
    领券