首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在STL分解中使用卷积滤波器查找趋势分量背后的逻辑是什么?

在STL(Seasonal and Trend decomposition using Loess)分解中使用卷积滤波器查找趋势分量背后的逻辑是通过滤波器对原始时间序列进行平滑处理,以便更好地提取出趋势分量。

具体逻辑如下:

  1. STL分解是一种常用的时间序列分解方法,用于将原始时间序列分解为趋势、季节性和残差三个部分。
  2. 在STL分解中,首先对原始时间序列进行季节性分解,通过对原始序列进行局部加权回归(Loess)平滑处理,得到季节性分量。
  3. 接下来,通过从原始序列中减去季节性分量,得到去除季节性的序列。
  4. 对去除季节性的序列应用卷积滤波器,可以更好地捕捉到序列的趋势分量。
  5. 卷积滤波器是一种线性时不变系统,通过对序列进行滑动窗口的加权平均,可以平滑序列并提取出趋势信息。
  6. 最后,将趋势分量与季节性分量和残差分量相加,即可得到原始时间序列的STL分解结果。

使用卷积滤波器查找趋势分量的优势在于:

  1. 卷积滤波器可以对序列进行平滑处理,去除噪声和异常值,提取出序列的趋势信息。
  2. 卷积滤波器具有线性时不变的特性,可以在不同的时间窗口上进行滑动,适应不同的趋势变化。
  3. STL分解结合了季节性分解和趋势分解的优势,能够更准确地描述时间序列的特征。

卷积滤波器在STL分解中的应用场景包括但不限于:

  1. 时间序列分析和预测:通过对时间序列进行STL分解,可以更好地理解序列的趋势和季节性变化,从而进行更准确的预测和分析。
  2. 数据挖掘和异常检测:通过对时间序列进行STL分解,可以将异常值和噪声从序列中分离出来,便于进行异常检测和数据挖掘。
  3. 经济和金融领域:STL分解可以应用于经济和金融领域的时间序列分析,如股票价格预测、宏观经济指标分析等。

腾讯云相关产品和产品介绍链接地址: 腾讯云提供了丰富的云计算产品和服务,包括但不限于:

  1. 云服务器(ECS):提供弹性计算能力,支持多种操作系统和应用场景。产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 云数据库(CDB):提供高可用、可扩展的数据库服务,支持关系型数据库和NoSQL数据库。产品介绍链接:https://cloud.tencent.com/product/cdb
  3. 人工智能(AI):提供丰富的人工智能服务,包括图像识别、语音识别、自然语言处理等。产品介绍链接:https://cloud.tencent.com/product/ai
  4. 云存储(COS):提供安全可靠的对象存储服务,适用于各种数据存储和备份需求。产品介绍链接:https://cloud.tencent.com/product/cos
  5. 区块链(BCS):提供高性能、可扩展的区块链服务,支持企业级应用场景。产品介绍链接:https://cloud.tencent.com/product/bcs

请注意,以上链接仅为示例,实际使用时应根据具体需求选择合适的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 在图像的傅里叶变换中,什么是基本图像_傅立叶变换

    大家好,又见面了,我是你们的朋友全栈君。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅立叶变换属于调和分析的内容。”分析”二字,可以解释为深入的研究。从字面上来看,”分析”二字,实际就是”条分缕析”而已。它通过对函数的”条分缕析”来达到对复杂函数的深入理解和研究。从哲学上看,”分析主义”和”还原主义”,就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。 在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。”任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇: 1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子; 2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似; 3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)). 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 傅立叶变换在图像处理中有非常非常的作用

    01

    [有意思的数学] 傅里叶变换和卷积与图像滤波的关系 (2)

    昨天简单介绍了Fourier变换和卷积的概念,有了一个基本的认识之后,再看图像滤波,就不会觉得那么莫名其妙了。图像滤波这其实也是个大坑,里面涉及的东西很多,想通过今天这篇文章一下都掌握了,基本是不可能的。所以我这里就是给新手一个方向,如果想做图像方面的研究,该如何下手,然后怎么继续研究。但是我会尽力把涉及的点都提到,我觉得肯花时间来看我写的这篇文章,肯定是个好学好动手的好孩子。所以看完这个之后,最好再百度or Google一下,找点相关的资料,然后亲手动手实践一下就最好了,这样就有了一个全面的认识。 图像

    06

    EEGNet:一个小型的卷积神经网络,用于基于脑电的脑机接口

    脑机接口(BCI)利用神经活动作为控制信号,可以与计算机直接通信。这种神经信号通常从各种研究充分的脑电图(EEG)信号中选择。对于给定的脑机接口(BCI)范式,特征提取器和分类器是针对其所期望的脑电图控制信号的不同特征而定制的,这限制了其对特定信号的应用。卷积神经网络(Convolutional neural networks, CNNs)已被用于计算机视觉和语音识别中进行自动特征提取和分类,并成功地应用于脑电信号识别中;然而,它们主要应用于单个BCI范例,因此尚不清楚这些架构如何推广到其他范例。在这里,我们想问的是,我们是否可以设计一个单一的CNN架构来准确地分类来自不同BCI范式的脑电图信号,同时尽可能小型的方法。在这项工作中,我们介绍了EEGNet,一个小型的卷积神经网络为基于脑电图的BCI。我们介绍了深度卷积和可分离卷积的使用来构建脑电图特定模型,该模型封装了众所周知的脑机接口脑电图特征提取概念。我们比较了EEGNet,包括被试内和跨被试分类,以及目前最先进的四种BCI范式:P300视觉诱发电位、错误相关负波(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)。我们表明,当在所有测试范例中只有有限的训练数据可用时,EEGNet比参考算法更好地泛化,并取得了相当高的性能。此外,我们还演示了三种不同的方法来可视化训练过的EEGNet模型的内容,以支持对学习到的特征的解释。意义:我们的结果表明,EEGNet足够鲁棒,可以在一系列BCI任务中学习各种各样的可解释特征。本文发表在Journal of Neural Engineering杂志。

    03

    当前深度神经网络模型压缩和加速方法速览

    导读: 本文全面概述了深度神经网络的压缩方法,主要可分为参数修剪与共享、低秩分解、迁移/压缩卷积滤波器和知识精炼,本论文对每一类方法的性能、相关应用、优势和缺陷等进行独到的分析。机器之心简要介绍了该论文,更详细的内容请查看原论文。 大型神经网络具有大量的层级与结点,因此考虑如何减少它们所需要的内存与计算量就显得极为重要,特别是对于在线学习和增量学习等实时应用。此外,近来智能可穿戴设备的流行也为研究员提供了在资源(内存、CPU、能耗和带宽等)有限的便携式设备上部署深度学习应用提供了机会。高效的深度学习方法可以

    06
    领券