首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NLP在政府和公共服务中的应用:从原理到实践

NLP技术在政府和公共服务中的创新应用1. 引言随着人工智能的不断发展,自然语言处理(NLP)技术在政府和公共服务领域的应用逐渐成为推动公共管理创新的重要力量。...本文将深入研究NLP技术在政府和公共服务中的各个方面的应用,从智能办公到智能公告解读,结合实例展示NLP如何为政府提供更高效、更智能的服务,推动公共服务领域的数字化升级。2....NLP在公告解读和信息披露中的应用3.1 智能公告解读政府和公共服务机构发布的公告通常具有一定的法律和行政性质,理解这些公告对于市民十分重要。...NLP在政府数据开放和查询中的应用4.1 智能数据开放政府数据的开放对于促进科技创新和民众参与公共事务至关重要。...结语NLP技术在政府和公共服务中的应用为公共管理带来了全新的机遇和挑战。从智能办公到公告解读,再到数据开放和查询,NLP技术正在改变着政府工作的方式,使其更加数字化、智能化。

64910

从2D到3D:无类别方法在单目3D目标检测中的应用与评估 !

在这项工作中,作者旨在填补这一空白。OVMono3D任务涉及在度量3D空间中检测和定位任何类别的物体,包括在训练过程中未见过的全新类别。...单目3D目标检测指的是利用从单视图像中推导出的3D边界框来识别和定位场景中的物体。早期研究主要针对户外或室内环境,专注于特定应用,如城市区域自动驾驶和房间布局估计。...词汇集C被分为两个子集:_基础类别_C_base,在训练过程中可见,以及_新类别_C_novel,在训练过程中未见,仅在推理过程中评估。...几何方法从2D检测中重构3D边界框,而不依赖学习的3D属性,为评估OV 3D目标检测模型提供了一个非学习基础的基准。...在评估时,作者从剩下的类别中选择22个类别作为新类别。这些类别是根据两个标准选择的:测试实例的数量和类别命名的精确度。

11800
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 的Merge函数详解

    在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。...pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...列和索引合并 在上面合并的数据集中,merge函数在cust_id列上连接两个数据集,因为它是唯一的公共列。我们也可以指定要在两个数据集上连接的列名。...在Inner Join中,根据键之间的交集选择行。匹配在两个键列或索引中找到的相同值。...在上面的代码中,与delivery_date不完全匹配的order_date试图在delivery_date列中找到与order_date值较小或相等的键。

    32330

    6个冷门但实用的pandas知识点

    sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序: df = pd.DataFrame({ 'V1':...range(5), 'V2': range(5) }) df.sample(frac=1) 图4 2.3 利用类别型数据减少内存消耗 当我们的数据框中某些列是由少数几种值大量重复形成时,会消耗大量的内存...np.random.choice(pool, 1000000) }) # 查看内存使用情况 df.memory_usage(deep=True) 图5 这种时候我们可以使用到pandas数据类型中的类别型来极大程度上减小内存消耗...2.4 pandas中的object类型陷阱 在日常使用pandas处理数据的过程中,经常会遇到object这种数据类型,很多初学者都会把它视为字符串,事实上object在pandas中可以代表不确定的数据类型...') 图15 「first」 在first策略下,当多个元素相同时,会根据这些相同元素在实际Series中的顺序分配排名: s = pd.Series([2, 2, 2, 1, 3]) s.rank

    89130

    6个冷门但实用的pandas知识点

    sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序: df = pd.DataFrame({ 'V1':...图4 2.3 利用类别型数据减少内存消耗   当我们的数据框中某些列是由少数几种值大量重复形成时,会消耗大量的内存,就像下面的例子一样: import numpy as np pool = ['A',...图5   这种时候我们可以使用到pandas数据类型中的类别型来极大程度上减小内存消耗: df['V1'] = df['V1'].astype('category') df.memory_usage(deep...2.4 pandas中的object类型陷阱   在日常使用pandas处理数据的过程中,经常会遇到object这种数据类型,很多初学者都会把它视为字符串,事实上object在pandas中可以代表不确定的数据类型...图15 first   在first策略下,当多个元素相同时,会根据这些相同元素在实际Series中的顺序分配排名: s = pd.Series([2, 2, 2, 1, 3]) s.rank(method

    1.2K40

    数据导入与预处理-第6章-02数据变换

    数据变换主要是从数据中找到特征表示,通过一些转换方法减少有效变量的数目或找到数据的不变式,常见的操作可以分为数据标准化处理、数据离散化处理和数据泛化处理三类。...使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...DataFrameGroupBy的数据: # 通过列表生成器 获取DataFrameGroupBy的数据 result = dict([x for x in groupby_obj])['A'] # 字典中包含多个...28, 34], 'f': [2, 2, 2, 3, 3, 2]}) df_obj 输出为: 查看DF的值: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组...agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4, 5]

    19.3K20

    整理了25个Pandas实用技巧(下)

    从剪贴板中创建DataFrame 假设你将一些数据储存在Excel或者Google Sheet中,你又想要尽快地将他们读取至DataFrame中。 你需要选择这些数据并复制至剪贴板。...注:该方法在机器学习或者深度学习中很有用,因为在模型训练前,我们往往需要将全部数据集按某个比例划分成训练集和测试集。该方法既简单又高效,值得学习和尝试。...DataFrame: 这里有两列,第二列包含了Python中的由整数元素组成的列表。...DataFrame组合起来: 对多个函数进行聚合 让我们来看一眼从Chipotle restaurant chain得到的orders这个DataFrame: In [82]: orders.head...注意到,该数据类型为类别变量,该类别变量自动排好序了(有序的类别变量)。 Style a DataFrame 上一个技巧在你想要修改整个jupyter notebook中的显示会很有用。

    2.4K10

    Python 数据分析(PYDA)第三版(三)

    这些函数的可选参数可能属于几个类别: 索引 可以将一个或多个列视为返回的 DataFrame,并确定是否从文件、您提供的参数或根本不获取列名。...日期和时间解析 包括一种组合能力,包括将分布在多个列中的日期和时间信息组合成结果中的单个列。 迭代 支持迭代处理非常大文件的块。...虽然数据可以随时添加到文件中,但如果多个写入者同时这样做,文件可能会损坏。 6.3 与 Web API 交互 许多网站都有提供数据源的公共 API,可以通过 JSON 或其他格式提供数据。...如果 DataFrame 中的一行属于多个类别,则我们必须使用不同的方法来创建虚拟变量。...extract 使用具有组的正则表达式从字符串 Series 中提取一个或多个字符串;结果将是一个每组一列的 DataFrame endswith 对每个元素等同于 x.endswith(pattern

    33400

    基于Spark的机器学习实践 (八) - 分类算法

    在该上下文中,每个观察是一个文档,每个特征代表一个术语。特征值是术语的频率(在多项式朴素贝叶斯中)或零或一个,表示该术语是否在文档中找到(在伯努利朴素贝叶斯中)。要素值必须为非负值。...给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率[二元][线性分类器]。...有关spark.ml实现的更多信息可以在决策树的部分中找到。 示例 以下示例以LibSVM格式加载数据集,将其拆分为训练和测试集,在第一个数据集上训练,然后评估保持测试集。...DataFrame 可以被用来保存各种类型的数据,如我们可以把特征向量存储在 DataFrame 的一列中,这样用起来是非常方便的。...可以从常规RDD隐式或显式创建DataFrame 6.1.1.2 Transformer Transformer是一种可以将一个DataFrame转换为另一个DataFrame的算法.

    1.1K20

    使用Python分析姿态估计数据集COCO的教程

    在一个图像中可能有多个人,因此是一对多的关系。 在下一步中,我们合并两个表(left join操作)并将训练集和验证集组合,另外,我们添加了一个新列source,值为0表示训练集,值为1表示验证集。...计算方法如下: 如果scale_y在[0–0.4)范围内,则类别为S 如果scale_y在[0.4–0.6)范围内,则类别为M 如果scale_y在[0.6–0.8)范围内,则类别为L 如果scale_y...在[0.8–1.0)范围内,则类别为XL 在第42行中,我们将原始列与新列进行合并。...在第40-44行,我们从dataframe中找到所需列的索引。...,我们必须从57%的男性和43%的女性中按比例选择。 换句话说,分层抽样在训练集和验证集中保持了57%的男性/43%的女性的比率。

    2.5K10

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    按行从多个文件中构建DataFrame 假设你的数据集分化为多个文件,但是你需要将这些数据集读到一个DataFrame中。 举例来说,我有一些关于股票的小数聚集,每个数据集为单天的CSV文件。...按列从多个文件中构建DataFrame 上一个技巧对于数据集中每个文件包含行记录很有用。但是如果数据集中的每个文件包含的列信息呢?...从DataFrame中筛选出数量最多的类别 假设你想要对movies这个DataFrame通过genre进行过滤,但是只需要前3个数量最多的genre。...将一个由列表组成的Series扩展成DataFrame 让我们创建一个新的示例DataFrame: ? 这里有两列,第二列包含了Python中的由整数元素组成的列表。...对多个函数进行聚合 让我们来看一眼从Chipotle restaurant chain得到的orders这个DataFrame: ?

    3.2K10

    基于Spark的机器学习实践 (八) - 分类算法

    在该上下文中,每个观察是一个文档,每个特征代表一个术语。特征值是术语的频率(在多项式朴素贝叶斯中)或零或一个,表示该术语是否在文档中找到(在伯努利朴素贝叶斯中)。要素值必须为非负值。...给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元。...有关spark.ml实现的更多信息可以在决策树的部分中找到。 示例 以下示例以LibSVM格式加载数据集,将其拆分为训练和测试集,在第一个数据集上训练,然后评估保持测试集。...DataFrame 可以被用来保存各种类型的数据,如我们可以把特征向量存储在 DataFrame 的一列中,这样用起来是非常方便的。...可以从常规RDD隐式或显式创建DataFrame 6.1.1.2 Transformer Transformer是一种可以将一个DataFrame转换为另一个DataFrame的算法.

    1.8K31

    Pandas高级数据处理:多级索引

    一、多级索引简介Pandas中的多级索引(MultiIndex)是用于表示更高维度数据的一种方式,它允许我们在一个轴上拥有多个层次的索引。这在处理分层数据或需要更精细控制数据访问时非常有用。...例如,在金融数据分析中,我们可能想要按日期和股票代码同时对数据进行索引;或者在实验数据中,按照实验批次和样本编号进行索引。...(二)从已有DataFrame创建如果已经有一个DataFrame,并且其中某些列可以作为多级索引的一部分,我们可以使用set_index()方法来创建多级索引。...如果是从DataFrame创建多级索引,确保set_index()方法中传入的列名顺序正确。(二)数据选择困难对于新手来说,在多级索引的数据结构中选择数据可能会比较困难。...这里slice(None)表示选择该级别下的所有元素。如果要获取某类产品在所有地区的销售数据,则可以使用df.xs('产品类别名称', level = '产品类别')。

    16510

    最全面的Pandas的教程!没有之一!

    从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...下面这个例子,我们从元组中创建多级索引: ? 最后这个 list(zip()) 的嵌套函数,把上面两个列表合并成了一个每个元素都是元组的列表。...上面的结果中,Sales 列就变成每个公司的分组平均数了。 计数 用 .count() 方法,能对 DataFrame 中的某个元素出现的次数进行计数。 ?...你可以在 Pandas 的官方文档 中找到更多数据透视表的详细用法和例子。 于是,我们按上面的语法,给这个动物统计表创建一个数据透视表: ? 或者也可以直接调用 df 对象的方法: ?...由于一个页面上含有多个不同的表格,我们需要通过下标 [0, ..., len(tables) - 1] 访问数组中的不同元素。 下面的这个例子,我们显示的是页面中的第 2 个表格: ? 结语 恭喜!

    26K64

    深入理解XGBoost:分布式实现

    map:对原始RDD中的每个元素执行一个用户自定义函数生成一个新的RDD。任何原始RDD中的元素在新的RDD中有且只有一个元素与之对应。...cache:将RDD元素从磁盘缓存到内存,相当于persist(MEMORY_ONLY)。...groupBy:将RDD中元素通过函数生成相应的key,然后通过key对元素进行分组。 reduceByKey:将数据中每个key对应的多个value进行用户自定义的规约操作。...DataFrame是一个具有列名的分布式数据集,可以近似看作关系数据库中的表,但DataFrame可以从多种数据源进行构建,如结构化数据文件、Hive中的表、RDD等。...模型选择可以在单独的Estimator(如逻辑回归)中完成,也可以在包含多个算法或者其他步骤的Pipeline中完成。

    4.2K30

    Pandas入门操作

    = pd.DataFrame([ [1001,'Mike',20], [1002,'Bob',21], [1003,'Alice',22], ]) # 从磁盘导入数据集 df...DataFrame 简单的统计量 df.describe().T ?...df.loc[2,'住宅类别']='普通住宅' 检查缺失值 df['住宅类别'].isnull() # 输出‘住宅类别中’所有的值是否为空 df['住宅类别'].isnull().any() # 检查...‘住宅类别中’是否有一列为空 df.isnull().any() # 检查所有列中是否含有控制 df.isnull().sum() # 对所有列中的空值进行计数 移除缺失值 # 函数作用:删除含有空值的行或列...# axis:维度,axis=0表示index行,axis=1表示columns列,默认为0 # how:"all"表示这一行或列中的元素全部缺失(为nan)才删除这一行或列,"any"表示这一行或列中只要有元素缺失

    84820
    领券