首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...二、非聚合类方法 这里的非聚合指的是数据处理前后没有进行分组操作,数据列的长度没有发生改变,因此本章节中不涉及groupby()。...2.1 map() 类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。

5K10

不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果。...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...','gender']).apply(find_most_name).reset_index(drop=False) 3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas...中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。

5.8K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧(本文使用到的所有代码及数据均保存在我的github仓库:https://github.com/CNFeffery...2.1 map()   类似Python内建的map()方法,pandas中的map()方法将函数、字典索引或是一些需要接受单个输入值的特别的对象与对应的单个列的每一个元素建立联系并串行得到结果,譬如这里我们想要得到...三、聚合类方法   有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...3.1 利用groupby()进行分组   要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...3.2 利用agg()进行更灵活的聚合   agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典

    5.1K60

    在 PySpark 中,如何使用 groupBy() 和 agg() 进行数据聚合操作?

    在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...result.show()# 停止 SparkSessionspark.stop()详细步骤说明创建 SparkSession:使用 SparkSession.builder 创建一个 SparkSession 对象...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。

    9410

    Pandas用到今天,没成想竟忽略了这个函数

    transform是Pandas中的一个函数,既可组用于Series和DataFrame,也可与groupby联用作用于DataFrameGroupBy对象,所以本文主要介绍transform的两个主要功能...02 元素级的函数变换 在前期推文Pandas中的这3个函数,没想到竟成了我数据处理的主力一文中,重点介绍了apply、map以及applymap共3个函数的常用用法,那么transform的第一个功能颇有些...需要对数值列A执行指数和对数两种运算(即对一个Series对象用transform,得到一个两列的DataFrame),显然传递函数格式需用列表,即: ?...03 与groupby配套使用 transform可用于groupby对象,这是我最初学习transform的作用,在Pandas中groupby的这些用法你都知道吗?...一文中其实也有所介绍,所以此处就简单提及。 Pandas实现常用的聚合统计中,一般是用groupby直接加聚合函数或者通过agg传递若干聚合函数,更为定制化的也可通过groupby+apply实现。

    79420

    Pandas中的对象

    安装并使用PandasPandas对象简介Pandas的Series对象Series是广义的Numpy数组Series是特殊的字典创建Series对象Pandas的DataFrame对象DataFrame...是广义的Numpy数组DataFrame是特殊的字典创建DataFrame对象Pandas的Index对象将Index看作不可变数组将Index看作有序集合 安装并使用Pandas import numpy...Pandas对象简介 如果从底层视角观察Pandas,可以把它们看成增强版的Numpy结构化数组,行列都不再是简单的整数索引,还可以带上标签。...先来看看Pandas三个基本的数据结构: Series DataFrame Index Pandas的Series对象 Pandas的Series对象是一个带索引数据构成的一维数组,可以用一个数组创建Series...Numpy数组相似的属性 print(ind.size, ind.shape, ind.ndim, ind.dtype) 5 (5,) 1 int64 Index对象的索引是不可逆的,也就是说不能通过赋值的方法进行调整

    2.7K30

    Pandas库在Anaconda中的安装方法

    本文介绍在Anaconda环境中,安装Python语言pandas模块的方法。 pandas模块是一个流行的开源数据分析和数据处理库,专门用于处理和分析结构化数据。...数据读写方面,pandas模块支持从各种数据源读取数据,包括CSV、Excel、SQL数据库、JSON、HTML网页等;其还可以将数据写入这些不同的格式中,方便数据的导入和导出。   ...时间序列分析方面,pandas模块在处理时间序列数据方面也非常强大。其提供了日期和时间的处理功能,可以对时间序列数据进行重采样、滚动窗口计算、时序数据对齐等操作。   ...在之前的文章中,我们也多次介绍了Python语言pandas库的使用;而这篇文章,就介绍一下在Anaconda环境下,配置这一库的方法。   ...在这里,由于我是希望在一个名称为py38的Python虚拟环境中配置pandas库,因此首先通过如下的代码进入这一环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda创建、使用、删除Python

    70310

    python中fillna_python – 使用groupby的Pandas fillna

    ,这是相似的,如果列[‘three’]不完全是nan,那么从列中的值为一行类似键的现有值’3′] 这是我的愿望结果 one | two | three 1 1 10 1 1 10 1 1 10 1 2...我尝试过使用groupby fillna() df[‘three’] = df.groupby([‘one’,’two’])[‘three’].fillna() 这给了我一个错误....我尝试了向前填充,这给了我相当奇怪的结果,它向前填充第2列.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...解决方法: 如果每组只有一个非NaN值,则每组使用ffill(向前填充)和bfill(向后填充),因此需要使用lambda: df[‘three’] = df.groupby([‘one’,’two’]...three 0 1 1 10.0 1 1 1 40.0 2 1 1 25.0 3 1 2 20.0 4 1 2 20.0 5 1 2 20.0 6 1 3 NaN 7 1 3 NaN 标签:python,pandas

    1.8K30

    对比MySQL学习Pandas的groupby分组聚合

    最后执行的是having表示分组后的筛选,在pandas中,通过上图可以发现我们得到了一个df1对象,针对这个df1对象,我们再做一次筛选,也表示分组后的筛选。...综上所述:只要你的逻辑想好了,在pandas中,由于语法顺序和逻辑执行顺序是一致的,你就按照逻辑顺序写下去,就很容易了。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...2)groupby分组对象的常用方法或属性。...针对分组对象,我们既可以直接调用聚合函数sum()、mean()、count()、max()、min(),还可以调用分组对象的agg()方法,然后像agg()中传入指定的参数。

    3.2K10

    对比MySQL学习Pandas的groupby分组聚合

    最后执行的是having表示分组后的筛选,在pandas中,通过上图可以发现我们得到了一个df1对象,针对这个df1对象,我们再做一次筛选,也表示分组后的筛选。...综上所述:只要你的逻辑想好了,在pandas中,由于语法顺序和逻辑执行顺序是一致的,你就按照逻辑顺序写下去,就很容易了。...; 注意:combine这一步是自动完成的,因此针对pandas中的分组聚合,我们只需要学习两个内容,① 学习怎么分组;② 学习如何针对每个分组中的数据,进行对应的逻辑操作; 03 groupby分组对象的相关操作...2)groupby分组对象的常用方法或属性。...针对分组对象,我们既可以直接调用聚合函数sum()、mean()、count()、max()、min(),还可以调用分组对象的agg()方法,然后像agg()中传入指定的参数。

    2.9K10

    JavaScript 中的新数组方法:groupBy

    JavaScript 中的 groupBy 方法是 ECMAScript 2021 官方引入的标准库的一项宝贵补充。它简化了基于指定键或函数对数组元素进行分组的过程。...mapFn(可选):接受一个元素作为参数并返回存储在键下的转换值的函数。...返回值:groupBy 方法返回一个新的 Map 对象,其中键是应用于每个元素的键函数的唯一值,而值是包含原始数组中相应元素的数组。...可读性:代码变得更加可读,更容易理解,特别是在处理复杂的数据结构时。效率:根据实现方式,groupBy 对于大型数据集而言可能比手动方法更高效。...兼容性groupBy 方法相对较新,尚未被所有浏览器完全支持。然而,它在现代浏览器中得到广泛支持,并且可以在较旧的环境中轻松进行 polyfill。

    58010

    Pandas中groupby的这些用法你都知道吗?

    01 如何理解pandas中的groupby操作 groupby是pandas中用于数据分析的一个重要功能,其功能与SQL中的分组操作类似,但功能却更为强大。...的每个元素(标量);面向dataframe对象,apply函数的处理粒度是dataframe的一行或一列(series对象);而现在面向groupby后的group对象,其处理粒度则是一个分组(dataframe...transform,又一个强大的groupby利器,其与agg和apply的区别相当于SQL中窗口函数和分组聚合的区别:transform并不对数据进行聚合输出,而只是对每一行记录提供了相应聚合结果;而后两者则是聚合后的分组输出...实际上,pandas中几乎所有需求都存在不止一种实现方式!...另外,还可将groupby与resample链式使用,但仅可以是resample在groupby之后,反之则会报错。例如: ?

    4.3K40

    Pandas数据聚合:groupby与agg

    引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...本文将从基础概念、常见问题、常见报错及解决方案等方面,由浅入深地介绍如何使用Pandas的groupby和agg方法,并通过代码案例进行详细解释。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...groupby返回的是一个GroupBy对象,该对象本身并不包含任何聚合结果,而是提供了一个接口来应用各种聚合函数。 agg 方法 agg(aggregate的缩写)用于对分组后的数据进行聚合计算。...单列聚合 基本用法 对于单列数据的聚合,通常我们会先使用groupby方法指定分组依据,然后调用agg方法并传入具体的聚合函数。

    40810

    《Pandas Cookbook》第07章 分组聚合、过滤、转换1. 定义聚合2. 用多个列和函数进行分组和聚合3. 分组后去除多级索引4. 自定义聚合函数5. 用 *args 和 **kwargs

    # 也可以向agg中传入NumPy的mean函数 In[5]: flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.mean).head() Out[5]:...原理 # groupby方法产生的是一个DataFrameGroupBy对象 In[7]: grouped = flights.groupby('AIRLINE') type(grouped...() return std_score.abs().max() # agg聚合函数在调用方法时,直接引入自定义的函数名 In[25]: college.groupby('STABBR...用 *args 和 **kwargs 自定义聚合函数 # 用inspect模块查看groupby对象的agg方法的签名 In[31]: college = pd.read_csv('data/college.csv...# groupby对象使用head方法,可以在一个DataFrame钟显示每个分组的头几行 In[49]: grouped.head(2).head(6) Out[49]: ?

    8.9K20

    Python数据分析 | Pandas数据分组与操作

    Pandas中可以借助groupby操作对Dataframe分组操作,本文介绍groupby的基本原理及对应的agg、transform和apply方法与操作。...") 经过groupby处理之后我们会得到一个DataFrameGroupBy对象: group # 输出 pandas.core.groupby.generic.DataFrameGroupBy object...groupby之后可以进行下一步操作,注意,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。 下面我们一起看看groupby之后的常见操作。...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...相比于agg和transform,apply方法拥有更大的灵活性,但它的运行效率会比agg和transform慢。

    2.9K41

    Pandas中实现聚合统计,有几种方法?

    对于上述仅有一种聚合函数的例子,在pandas中更倾向于使用groupby直接+聚合函数,例如上述的分组计数需求,其实就是groupby+count实现。...03 groupby+agg 上述方法是直接使用groupby+相应的聚合函数,这种聚合统计方法简单易懂,但缺点就是仅能实现单一的聚合需求,对于有多种聚合函数的情况是不适用的。...agg函数主要接收两个参数,第一个参数func用于接收聚合算子,可以是一个函数名或对象,也可以是一个函数列表,还可以是一个字典,使用方法很是灵活;第二参数axis则是指定聚合所沿着的轴向,默认是axis...在上述方法中,groupby('country')后的结果,实际上是得到了一个DataFrameGroupBy对象,实际上是一组(key, value)的集合,其中每个key对应country列中的一种取值...最后,虽然本文以简单的分组计数作为讲解案例,但所提到的方法其实是能够代表pandas中的各种聚合统计需求。

    3.2K60

    python数据分析——数据分类汇总与统计

    第一个阶段,pandas对象中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。...你可能想知道在GroupBy对象上调用mean()时究竟发生了什么。许多常见的聚合运算(如表5.1所示)都有进行优化。然而,除了这些方法,你还可以使用其它的。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...关键技术:在调用某对象的apply方法时,其实就是把这个对象当作参数传入到后面的匿名函数中。...关键技术:在pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,values、index、 columns最为关键,它们分别对应Excel透视表中的值、行、列。

    82010

    数据导入与预处理-第6章-02数据变换

    使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...DataFrameGroupBy和SeriesGroupBy都是GroupBy的子类。 若DataFrame类对象调用groupby()方法,会返回一个DataFrameGroupBy类的对象。...若Series类对象调用groupby()方法,会返回一个SeriesGroupBy类的对象。...(df_obj.groupby("key")['data'].value_counts()) 输出为: 2.3.2 聚合操作 (6.2.3 ) pandas中可通过多种方式实现聚合操作,除前面介绍过的内置统计方法之外...在使用agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4

    19.3K20
    领券