首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Redis 实战篇:通过 Geo 类型实现附近的人邂逅女神

” 以用户为中心,给定一个 1000 米作为半径画圆,那么圆形区域内的用户就是我们想要邂逅的「附近的人」。 将经纬度存储到 MySQL: ?...” 在圆形外套上一个正方形,根据用户经、纬度的最大最小值(经、纬度 + 距离),作为筛选条件过滤数据,就很容易将正方形内的「女神」信息搜索出来。 ? “多出来的一些区域咋办?...” 多出来的这部分区域内的用户,到圆点的距离一定比圆的半径要大,那么我们就计算用户中心点与正方形内所有用户的距离,筛选出所有距离小于等于半径的用户,圆形区域内的所用户即符合要求的附近的人。...在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用 Redis 的 Geo 数据结构,它们将全部放在一个 zset 集合中。...在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象

1.4K20

Redis 实战篇:Geo 算法教你邂逅附近女神

” 以用户为中心,给定一个 1000 米作为半径画圆,那么圆形区域内的用户就是我们想要邂逅的「附近的人」。...” 在圆形外套上一个正方形,根据用户经、纬度的最大最小值(经、纬度 + 距离),作为筛选条件过滤数据,就很容易将正方形内的「女神」信息搜索出来。 “多出来的一些区域咋办?...” 多出来的这部分区域内的用户,到圆点的距离一定比圆的半径要大,那么我们就计算用户中心点与正方形内所有用户的距离,筛选出所有距离小于等于半径的用户,圆形区域内的所用户即符合要求的附近的人。...在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用 Redis 的 Geo 数据结构,它们将全部放在一个 zset 集合中。...在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Redis 实战篇:通过 Geo 类型实现附近的人邂逅女神

    ” 以用户为中心,给定一个 1000 米作为半径画圆,那么圆形区域内的用户就是我们想要邂逅的「附近的人」。...” 在圆形外套上一个正方形,根据用户经、纬度的最大最小值(经、纬度 + 距离),作为筛选条件过滤数据,就很容易将正方形内的「女神」信息搜索出来。 ? “多出来的一些区域咋办?...” 多出来的这部分区域内的用户,到圆点的距离一定比圆的半径要大,那么我们就计算用户中心点与正方形内所有用户的距离,筛选出所有距离小于等于半径的用户,圆形区域内的所用户即符合要求的附近的人。...在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用 Redis 的 Geo 数据结构,它们将全部放在一个 zset 集合中。...在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象

    1.2K50

    Redis基础教程(十五):Redis GEO地理信息查询与管理

    本文将深入探讨Redis GEO的特性和使用方法,并通过具体案例展示其在实际场景中的应用。...它允许用户存储地点的经纬度坐标,以及执行各种基于地理坐标的查询操作,如查找最近的地点、计算两点之间的距离、查询给定半径内的所有地点等。...它们接受一个中心点(可以是经纬度坐标或成员名)、半径和单位(米、公里、英里或海里)作为参数。...用户搜索 当用户在应用程序中搜索附近商家时,我们可以使用GEORADIUS命令来找到他们当前位置附近的所有商家: GEORADIUS geo:merchants $user_latitude $user_longitude...此命令将返回所有在5公里范围内的商家及其距离和坐标。 排序与过滤 我们还可以使用GEOFILTER命令对结果进行更复杂的排序和过滤,例如只返回特定类型的商家,或者按照距离排序。

    76510

    用 Redis 查询 “附近的人” !妙啊!

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...[ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...直接描述不太好理解,我们通过如下两张图在对算法进行简单的演示: 令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。

    26840

    使用Redis实现附近的人及打车服务

    面向LBS应用的GEO数据类型 各种社交软件里面都有附件的人的需求,在该应用中,我们查询附近 1 公里的食客,同时只需查询出 20 个即可。...将所有方格的编码值映射到一维空间,相邻方格GeoHash编码值也接近: 所以,使用Sorted Set范围查询得到的相近编码值,在实际地理空间也是相邻方格,即可实现LBS应用“附近的人”。...即这个矩形区域内所有的点(经纬度坐标)都共享相同的 GeoHash 字符串,这样既可保护隐私(只表示大概区域位置而非具体点),又容易做缓存。...在默认情况下, GEORADIUS 命令会返回所有匹配的位置元素。...虽然用户可以使用 COUNT 选项去获取前 N 个匹配元素, 但是因为命令在内部可能会需要对所有被匹配的元素进行处理, 所以在对一个非常大的区域进行搜索时, 即使只使用 COUNT 选项去获取少量元素,

    1.3K20

    Redis 到底是怎么实现“附近的人”这个功能的呢?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)),其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    1.9K20

    揭开Redis“附近的人”的神秘面纱

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    98220

    Redis 到底是怎么实现“附近的人”这个功能的呢?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)),其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    1.2K10

    看用 Redis 如何实现微信「​附近的人」​功能?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    92850

    Redis 到底是怎么实现“附近的人”这个功能的?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    94230

    Redis 到底是怎么实现“附近的人”这个功能的?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    79620

    Redis 是怎么实现 “附近的人” 的?

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。 ?...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    1.4K10

    Redis 实现「附近的人」

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。...结合Redis本身基于内存的存储特性,在实际使用过程中有非常高的运行效率。

    72720

    Redis实现附近的人

    各种社交软件里面都有附件的人的需求,在该应用中,我们查询附近 1 公里的食客,同时只需查询出 20 个即可。...即这个矩形区域内所有的点(经纬度坐标)都共享相同的 GeoHash 字符串,这样既可保护隐私(只表示大概区域位置而非具体点),又容易做缓存。...GeoHash,由于区域内的用户传来的经纬度各不相同的,很难做缓存。...在默认情况下, GEORADIUS 命令会返回所有匹配的位置元素。...虽然用户可以使用 COUNT 选项去获取前 N 个匹配元素, 但是因为命令在内部可能会需要对所有被匹配的元素进行处理, 所以在对一个非常大的区域进行搜索时, 即使只使用 COUNT 选项去获取少量元素,

    73820

    简单几步,实现 Redis 查询 “附近的人”

    : 返回两个给定位置之间的距离; GEOHASH: 返回一个或多个位置对象的Geohash表示; GEORADIUS: 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象;...] [ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如图)。...并可推算出Redis中GEORADIUS查找附近的人功能,时间复杂度为:O(N+log(M)) 其中N为指定半径范围内的位置元素数量,而M则是被九宫格圈住计算距离的元素的数量。

    61720

    利用 Redis 实现“附近的人”功能!

    GEORADIUS:以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...ASC|DESC] [COUNT count] [STORE key] [STORedisT key] 以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象。...令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算 GEOHASH 网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息)。...并可推算出 Redis 中 GEORADIUS 查找附近的人功能,时间复杂度为:O(N+log(M))。 其中 N 为指定半径范围内的位置元素数量,而 M 则是被九宫格圈住计算距离的元素的数量。

    1K20

    IM里“附近的人”功能实现原理是什么?如何高效率地实现它?

    它需要做以下两件事情: 1)所有使用该IM产品的人,在使用“附近的人”功能前提交自已的地理位置; 2)根据“我”的地理位置,计算出别人跟我的距离; 3)将第2步中计算出的距离由近及远,进行排序。...)GEODIST:返回两个给定位置之间的距离; 4)GEOHASH:返回一个或多个位置对象的Geohash表示; 5)GEORADIUS:以给定的经纬度为中心,返回目标集合中与中心的距离不超过给定最大距离的所有位置对象...如上图所示,令左图的中心为搜索中心,绿色圆形区域为目标区域,所有点为待搜索的位置对象,红色点则为满足条件的位置对象。...在实际搜索时,首先会根据搜索半径计算geohash网格等级(即右图中网格大小等级),并确定九宫格位置(即红色九宫格位置信息);再依次查找计算九宫格中的点(蓝点和红点)与中心点的距离,最终筛选出距离范围内的点...这其实是一个问题,本质上是对所有的元素对象进行了一次初步筛选。 在多层geohash网格中,每个低等级的geohash网格都是由4个高一级的网格拼接而成(如下图)。 ?

    1.9K00

    内网域渗透分析工具BloodHound

    0x01 BloodHound 介绍 BloodHound是一款可视化图形分析域环境中的关系的工具,以用图与线的形式,将域内用户、计算机、组、Sessions、ACLs以及域内所有相关用户、组、计算机、...登陆信息、访问控制策略之间的关系更直观的展现在红队人员面前进行更便捷的分析域内情况,更快速的在域内提升自己的权限。...Neo4j是一款NOSQL图形数据库,它将结构化数据存储在网络上而不是表中,Bloodhound利用这种特性加以合理分析,可以更加直观的将数据以节点空间”来表达相关数据。...BloodHound通过在域内导出相关信息,在将数据收集后,将其导入Neo4j数据库中,进行展示分析。 0x02 Neo4j 数据库安装 安装Neo4j数据库。...Containers Contains 可以在OU上添加一个新的ACE,它将继承到该OU下的所有子对象上,比如说在OU上应用GenericAll ACE ,那么所有子对象都将继承GenericAll属性

    2.5K60

    java根据经纬度计算距离_java根据高德经纬度获取地区

    实现方式还是比较简单的,首先用户在APP上开启定位权限,将自己的经纬度都存储到数据库,然后以此经纬度为基准,以特定距离为半径,查找此半径内的所有用户。...那么,如何java如何计算两个经纬度之间的距离呢?有两种方法,误差都在接受范围之内。 1、基于googleMap中的算法得到两经纬度之间的距离,计算精度与谷歌地图的距离精度差不多。...Math.pow(Math.sin(b / 2), 2))); s = s * EARTH_RADIUS; s = Math.round(s * 10000) / 10000; return s; } 2、计算中心经纬度与目标经纬度的距离...(米) /** * 计算中心经纬度与目标经纬度的距离(米) * * @param centerLon * 中心精度 * @param centerLat * 中心纬度 * @param targetLon...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    1.5K20
    领券