首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python之numpy的ndarray数组使用方法介绍

    NumPy介绍 NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括: (1)一个强大的N维数组对象ndrray; (2)比较成熟的(广播)函数库; (3)用于整合...C/C++和Fortran代码的工具包; (4)实用的线性代数、傅里叶变换和随机数生成函数 主要优点: 1.NumPy数组在数值运算方面的效率优于Python提供的list容器。...2.使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。...ndarray常用属性介绍 ndarray常用创建方法 这里只介绍最常用的方法,从python的list或者tuple中转化成ndarray,关于empty, emptylike, zeros, zeroslike...5] 取第二列 等价 print a[:,1] ==> [2 4 5] print a[1,...] ==> [3 4 5] 取第二行 print a[...,1:] ==> 取第一列之后的所有的列

    1K30

    理解numpy中ndarray的内存布局和设计哲学

    /reference/arrays.html ndarray是numpy中的多维数组,数组中的元素具有相同的类型,且可以被索引。...对象的其中一个函数,numpy中多维数组的类为np.ndarray。...因为ndarray是为矩阵运算服务的,ndarray中的所有数据都是同一种类型,比如int32、float64等,每个数据占用的字节数相同、解释方式也相同,所以可以稠密地排列在一起,在取出时根据dtype...,而list需要把每个对象的所有域值都存下来,所以ndarray比list要更省空间。...小结 下面小结一下: ndarray的设计哲学在于数据与其解释方式的分离,让绝大部分多维数组操作只发生在解释方式上; ndarray中的数据在物理内存上连续存储,在读取时根据dtype现组装成对象输出,

    1.5K10

    【Python进阶】你真的明白NumPy中的ndarray吗?

    1 ndarray内存机制 我们知道NumPy最重要的一个特点是其N维数组对象ndarray。通常ndarray内部由以下内容组成。...这也就是在NumPy 中数据存储的方式。...它存储在一个均匀连续的内存块中,可以这么理解,NumPy 将多维数组在内部以一维数组的方式存储,我们只要知道了每个元素所占的字节数(dtype)以及每个维度中元素的个数(shape),就可以快速定位到任意维度的任意一个元素...2.2 高维数组转置 高维数组的转置一直是学习NumPy的一个难点,尽管在NumPy中只需要调用numpy.transpose就可以完成转置操作,但是你真的能分析清楚为什么结果是这样的吗?...相信你已经看出了具体的差别了,那就是轴的索引顺序的互换。因为在代码中我们要求0轴和1轴互换,因此转置后的结果实际上就是a[1,0]会变成原数组a[0,1];a[0,1]会变成原数组a[1,0]。

    2K10

    Numpy中的数组维度

    ., 23) 进行重新的排列时,在多维数组的多个轴的方向上,先分配最后一个轴(对于二维数组,即先分配行的方向,对于三维数组即先分配平面的方向) # 代码 import numpy as np # 一维数组...a = np.arange(24) print("a的维度:\n",a.ndim) # 现在调整其大小,2行3列4个平面 b = np.reshape(np.arange(24), (2, 3, 4)...) # b 现在拥有三个维度 print("b(也是三维数组):\n",b) # 分别看看每一个平面的构成 print("b的每一个平面的构成:\n") print(b[:, :, 0]) print(...b[:, :, 1]) print(b[:, :, 2]) print(b[:, :, 3]) # 运行结果 a的维度: 1 b(也是三维数组): [[[ 0 1 2 3] [ 4 5...6 7] [ 8 9 10 11]] [[12 13 14 15] [16 17 18 19] [20 21 22 23]]] b的每一个平面的构成: [[ 0 4 8] [

    1.6K30

    numpy中数组的遍历技巧

    在numpy中,当需要循环处理数组中的元素时,能用内置通函数实现的肯定首选通函数,只有当没有可用的通函数的情况下,再来手动进行遍历,遍历的方法有以下几种 1....,所以通过上述方式只能访问,不能修改原始数组中的值。...print(i) ... 0 1 2 3 4 5 6 7 8 9 10 11 3. nditer迭代器 numpy中的nditer函数可以返回数组的迭代器,该迭代器的功能比flat更加强大和灵活,在遍历多维数组时...,而nditer可以允许我们在遍历的同时修改原始数组中的元素,只需要op_flags参数即可,用法如下 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7]...for循环迭代数组即可,注意二维数组和一维数组的区别,nditer的3个特点对应不同的使用场景,当遇到对应的情况时,可以选择nditer来进行遍历。

    12.5K10

    numpy中的掩码数组

    numpy中有一个掩码数组的概念,需要通过子模块numpy.ma来创建,基本的创建方式如下 >>> import numpy as np >>> import numpy.ma as ma >>> a...上述代码中,掩藏了数组的前3个元素,形成了一个新的掩码数组,在该掩码数组中,被掩藏的前3位用短横杠表示,对原始数组和对应的掩码数组同时求最小值,可以看到,掩码数组中只有未被掩藏的元素参与了计算。...掩码数组赋予了我们重新选择元素的权利,而不用改变矩阵的维度。...在可视化领域,最典型的应用就是绘制三角热图,代码如下 import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma...在numpy.ma子模块中,还提供了多种创建掩码数组的方式,用法如下 >>> import numpy.ma as ma >>> a array([0, 1, 2, 3, 4]) # 等于2的元素被掩盖

    1.9K20

    【NumPy 数组过滤、NumPy 中的随机数、NumPy ufuncs】

    python之Numpy学习 NumPy 数组过滤 从现有数组中取出一些元素并从中创建新数组称为过滤(filtering)。 在 NumPy 中,我们使用布尔索引列表来过滤数组。...我们不需要真正的随机数,除非它与安全性(例如加密密钥)有关或应用的基础是随机性(例如数字轮盘赌轮)。 在本教程中,我们将使用伪随机数。...实例 生成一个 0 到 100 之间的随机浮点数: from numpy import random x = random.rand() print(x) 生成随机数组 在 NumPy 中,我们可以使用上例中的两种方法来创建随机数组...ufuncs 指的是“通用函数”(Universal Functions),它们是对 ndarray 对象进行操作的 NumPy 函数。 为什么要使用 ufuncs?...ufunc 用于在 NumPy 中实现矢量化,这比迭代元素要快得多。 它们还提供广播和其他方法,例如减少、累加等,它们对计算非常有帮助。

    13110

    numpy中数组操作的相关函数

    在numpy中,有一系列对数组进行操作的函数,在使用这些函数之前,必须先了解以下两个基本概念 副本 视图 副本是一个数组的完整拷贝,就是说,先对原始数据进行拷贝,生成一个新的数组,新的数组和原始数组是独立的...在使用函数和方法时,我们首先要明确其操作的是原始数组的副本还是视图,然后根据需要来做选择。...数组的转置 数组转置是最高频的操作,在numpy中,有以下几种实现方式 >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9,...,而且在对应的轴上尺寸相同,特别需要注意,即使只是在二维数组的基础上增加1行或者1列,也要将添加项调整为二维数组。...中,实现同一任务的方式有很多种,牢记每个函数的用法是很难的,只需要挑选几个常用函数数量掌握即可。

    2.1K10

    在Python机器学习中如何索引、切片和重塑NumPy数组

    机器学习中的数据被表示为数组。 在Python中,数据几乎被普遍表示为NumPy数组。 如果你是Python的新手,在访问数据时你可能会被一些python专有的方式困惑,例如负向索引和数组切片。...在本教程中,你将了解在NumPy数组中如何正确地操作和访问数据。 完成本教程后,你将知道: 如何将你的列表数据转换为NumPy数组。 如何使用Pythonic索引和切片访问数据。...[11 22 33 44 55] numpy.ndarray'> 二维列表到数组 在机器学习中,你更有可能使用到二维数据。...[:]) 运行该示例输出数组中的所有元素。...我们可以这样做,将最后一列前的所有行和列分段,然后单独索引最后一列。 对于输入要素,在行索引中我们可以通过指定':'来选择最后一行外的所有行和列,并且在列索引中指定-1。

    19.1K90

    numpy数组中冒号和负号的含义

    numpy数组中":"和"-"的意义 在实际使用numpy时,我们常常会使用numpy数组的-1维度和":"用以调用numpy数组中的元素。也经常因为数组的维度而感到困惑。...总体来说,":"用以表示当前维度的所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示从后往前数的元素,-n即是表示从后往前数的第n个元素"#分片功能 a[1: ] 表示该列表中的第1...个元素到最后一个元素,而,a[ : n]表示从第0个元素到第n个元素(不包括n) import numpy as np POP_SIZE = 3 total_size = 10 idx = np.arange...[7 8 9] # good_idx_2 [0 1 2 3 4 5 6] # good_idx_3 [3 4 5 6 7 8 9] # good_idx_4 [0 1 2] 测试代码 import numpy...[[[18 19 20] # [21 22 23]]] print('b1[:,-1]\n', b1[:, -1]) # 表示取出最外层的所有维度后每一个子模块中选择最后一个子模块 # b1[

    2.2K20

    详解Numpy中的数组拼接、合并操作

    维度和轴在正确理解Numpy中的数组拼接、合并操作之前,有必要认识下维度和轴的概念:ndarray(多维数组)是Numpy处理的数据类型。...在一维空间中,用一个轴就可以表示清楚,numpy中规定为axis 0,空间内的数可以理解为直线空间上的离散点 (x iii, )。...在二维空间中,需要用两个轴表示,numpy中规定为axis 0和axis 1,空间内的数可以理解为平面空间上的离散点(x iii,y jjj)。...在三维空间中,需要用三个轴才能表示清楚,在二维空间的基础上numpy中又增加了axis 2,空间内的数可以理解为立方体空间上的离散点(x iii,y jjj,z kkk)。...Python中可以用numpy中的ndim和shape来分别查看维度,以及在对应维度上的长度。

    11.1K30

    VBA实用小程序61: 在文件夹内所有文件中运行宏在工作簿所有工作表中运行宏

    学习Excel技术,关注微信公众号: excelperfect 在文件夹中所有文件上运行宏,或者在Excel工作簿中所有工作表上运行宏,这可能是一种非常好的Excel自动化方案。...在文件夹内所有文件中运行宏 代码如下: '本程序来自于analystcave.com Sub RunOnAllFilesInFolder() Dim folderName As String...在子文件夹内所有文件中运行宏 当想在文件夹中所有Excel文件上运行宏时,其中的一种情况是遍历所有子文件夹来运行宏。...下面的内容与前述内容几乎相同,但是请注意声明了一个全局变量fileCollection,这将首先用于存储子文件夹中标识的所有文件,并且仅用于在此VBA集合中存储的文件上运行所有宏之后。..." End Sub 在工作簿所有工作表中运行宏 代码如下: '本程序来自于analystcave.com Sub RunOnAllWorksheets() Dim folderName As String

    4.8K11

    python笔记之NUMPY中的掩码数组numpy.ma.mask

    参考链接: Python中的numpy.asmatrix python科学计算_numpy_线性代数/掩码数组/内存映射数组   1....中已经有ndarray,再用matrix比较容易弄混;   矩阵乘积运算:   对于ndarray对象,numpy提供多种矩阵乘积运算:dot()、inner()、outer()   dot():对于两个一维数组...,计算的是这两个数组对应下标元素的乘积和,即:内积;对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,结>果数组中的每个元素都是:数组a最后一维上的所有元素与数组b倒数第二维>上的所有元素的乘积和...掩码数组   numpy.ma模块中提供掩码数组的处理,这个模块中几乎完整复制了numpy中的所有函数,并提供掩码数组的功能;   一个掩码数组由一个正常数组和一个布尔数组组成,布尔数组中值为True的...文件存取   numpy中提供多种存取数组内容的文件操作函数,保存的数组数据可以是二进制格式或者文本格式,二进制格式可以是无格式二进制和numpy专用的格式化二进制类型; tofile()方法将数组数据写到无格式二进制文件中

    3.5K00

    NumPy之:多维数组中的线性代数

    简介 本文将会以图表的形式为大家讲解怎么在NumPy中进行多维数据的线性代数运算。 多维数据的线性代数通常被用在图像处理的图形变换中,本文将会使用一个图像的例子进行说明。...B,G,A)的数组。...奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。...在上述的图像中,U是一个(80, 80)的矩阵,而Vt是一个(170, 170) 的矩阵。而s是一个80的数组,s包含了img中的奇异值。...本文已收录于 http://www.flydean.com/08-python-numpy-linear-algebra/ 最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

    1.7K30
    领券