首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用过Excel,就会获取pandas数据框架中的值、行和列

在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...获取1行 图7 获取多行 我们必须使用索引/切片来获取多行。在pandas中,这类似于如何索引/切片Python列表。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。

19.2K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    10招!看骨灰级Pythoner如何玩转Python

    (或者,你可以在linux中使用 head 命令来检查任何文本文件中的前5行,例如:head -c 5 data.txt) 然后,你可以使用df.columns.tolist()来提取列表中的所有列,然后添加...例如,如果你想检查“c”列中每个值的可能值和频率,可以执行以下操作 df[‘c’].value_counts() # 它有一些有用的技巧/参数: normalize = True #如果你要检查频率而不是计数...dropna = False #如果你要统计数据中包含的缺失值。...缺失值的数量 构建模型时,你可能希望排除具有很多缺失值或全是缺失值的行。你可以使用.isnull()和.sum()来计算指定列中缺失值的数量。...选择具有特定ID的行 在SQL中,我们可以使用SELECT * FROM ... WHERE ID( A001 , C022 ,...)来获取具有特定ID的记录。

    2.4K30

    涨姿势!看骨灰级程序员如何玩转Python

    (或者,你可以在linux中使用'head'命令来检查任何文本文件中的前5行,例如:head -c 5 data.txt) 然后,你可以使用df.columns.tolist()来提取列表中的所有列,然后添加...如果你想计算两列“c1”和“c2”的最大值,你可以: 1....A. normalize = True:如果你要检查频率而不是计数。 2. B. dropna = False:如果你要统计数据中包含的缺失值。 3....缺失值的数量 构建模型时,你可能希望排除具有很多缺失值或全是缺失值的行。你可以使用.isnull()和.sum()来计算指定列中缺失值的数量。 1....选择具有特定ID的行 在SQL中,我们可以使用SELECT * FROM ... WHERE ID('A001','C022',...)来获取具有特定ID的记录。

    2.3K20

    30 个 Python 函数,加速你的数据分析处理速度!

    df.dropna(axis=0, how='any', inplace=True) 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观测值(即行) france_churn = df[(df.Geography...12.Groupby 函数 Pandas Groupby 函数是一个多功能且易于使用的功能,可帮助获取数据概述。它使浏览数据集和揭示变量之间的基本关系更加容易。 我们将做几个组比函数的示例。...我们可以检查值计数函数返回的序列的大小或使用 nunique 函数。...pd.set_option("display.precision", 2) 可能要更改的一些其他选项包括: max_colwidth:列中显示的最大字符数 max_columns:要显示的最大列数 max_rows...在计算时间序列或元素顺序数组中更改的百分比时,它很有用。

    9.4K60

    一场pandas与SQL的巅峰大战(二)

    在公众号后台回复“对比二”可以获取本文的PDF版本以及全部的数据和代码。对于文中图片代码不清晰的,可以放大查看。...对于我们不关心的行,这两列的值都为nan。第三步再进行去重计数操作。...四、窗口函数 row_number hive中的row_number函数通常用来分组计数,每组内的序号从1开始增加,且没有重复值。比如我们对每个uid的订单按照订单时间倒序排列,获取其排序的序号。...lead刚好相反,是比当前记录大N的对应记录的指定字段值。我们来看例子。 ? 例子中的lag表示分组排序后,前一条记录的ts,lead表示后一条记录的ts。不存在的用NULL填充。...七 行转列 later view explode 行转列的操作在Hive SQL中有时会遇到,可以理解为将上一小节的结果还原为每个orderid显示一行的形式。

    2.3K20

    Pandas必会的方法汇总,数据分析必备!

    ,我们的数据除了数值之外,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。...() 返回一个时间索引 6 df.apply() 沿相应轴应用函数 7 Series.value_counts() 返回不同数据的计数值 8 df.reset_index() 重新设置index,参数drop...计算数据最大值所在位置的索引(自定义索引) 3 .argmin() 计算数据最小值所在位置的索引位置(自动索引) 4 .argmax() 计算数据最大值所在位置的索引位置(自动索引) 5 .describe...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。...举例:删除后出现的重复值: df['city'].drop_duplicates() 结语 文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series

    5.9K20

    三行代码产出完美数据分析报告!

    Pandas-Profiling对于每一列特征,特征的统计信息(如果与列类型相关)会显示在交互式 HTML的report中: Type:检测数据列类型; Essentials:类型、unique值、缺失值...分位数统计,如最小值、Q1、中位数、Q3、最大值、范围、四分位距 描述性统计数据,如均值、众数、标准差、总和、中值绝对偏差、变异系数、峰态、偏度 出现最多的值 直方图 高度相关变量、Spearman、...Pearson 和 Kendall 矩阵的相关性突出显示 缺失值矩阵、计数、热图和缺失值树状图 ... 03 Sweetviz Sweetviz也是一个开源Python库,Sweetviz可以用简短几行代码生成美观...、高密度的可视化文件,只需两行代码即可开启探索性数据分析并输出一个完全独立的 HTML 应用程序。...Sweetviz主要包含下面的分析: 数据集概述 变量属性 类别的关联性 数值关联性 数值特征最频繁值、最小、最大值 04 AutoViz AutoViz可以使用一行自动显示任何数据集。

    90230

    Python让Excel飞起来—批量进行数据分析

    F1单元格中 workbook.save() workbook.close() app.quit() 案例05 批量统计工作簿的最大值和最小值 代码文件:批量统计工作簿的最大值和最小值.py - 数据文件...前面通过直接观察法得出的结论是比较准确的。- 第2行代码中的read_excel()是pandas模块中的函数,用于读取工作簿数据。...- 第10~14行代码中的describe()是pandas模块中DataFrame对象的函数,用于总结数据集分布的集中趋势,生成描述性统计数据。该函数的语法格式和常用参数含义如下。...知识延伸 第8行代码中的cut()是pandas模块中的函数,用于对数据进行离散化处理,也就是将数据从最大值到最小值进行等距划分。该函数的语法格式和常用参数含义如下。...在3.7.2节中曾使用过figure()函数,这里再详细介绍一下该函数的语法格式和常用参数含义。- 第16行代码中的hist()是Matplotlib模块中的函数,用于绘制直方图。

    6.4K30

    Pandas实用手册(PART III)

    Pandas连续剧又来啦,在我们之前两篇文章中, 超详细整理!...本节介绍一些常用的数据汇总技巧。 取出某栏位top k的值 这你在选取某栏位为top-k值的样本小节应该就看过了。...一行描述数值栏位 当你想要快速了解DataFrame里所有数值栏位的统计数据(最小值、最大值、平均和中位数等)时可以使用describe函数: 你也可以用取得想要关注的数据一节的技巧来选取自己关心的统计数据...: 找出栏位里所有出现过的值 针对特定栏位使用unique函数即可: 分组汇总结果 很多时候你会想要把DataFrame里头的样本依照某些特性分门别类,并依此汇总各组(group)的统计数据。...接下来最重要的是培养你自己的「pandas 肌肉记忆」:「重复应用你在本文学到的东西,分析自己感兴趣的任何数据并消化这些知识」。 如果你有任何其他pandas 技巧,也请不吝留言与我分享!

    1.8K20

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。...我们有三个不同的城市,在不同的日子进行测量。我们决定将这些日子表示为列中的行。还将有一列显示测量值。...我们也可以使用melt函数的var_name和value_name参数来指定新的列名。 11. Explode 假设数据集在一个观测(行)中包含一个要素的多个条目,但您希望在单独的行中分析它们。...df.year.nunique() 10 df.group.nunique() 3 我们可以直接将nunique函数应用于dataframe,并查看每列中唯一值的数量: ?...Describe describe函数计算数字列的基本统计信息,这些列包括计数、平均值、标准偏差、最小值和最大值、中值、第一个和第三个四分位数。因此,它提供了dataframe的统计摘要。 ?

    5.7K30

    python数据分析——数据分类汇总与统计

    假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat...关键技术:在pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,values、index、 columns最为关键,它们分别对应Excel透视表中的值、行、列。

    82310

    Pandas入门2

    中的函数应用和映射 5.4.1 Numpy中的函数可以用于操作pandas对象 ?...image.png 5.6 pandas的聚合函数 聚合函数包括:求和,最大值,最小值,计数、均值、方差、分位数 这些聚合函数都是基于没有缺失数据的情况。 ?...image.png 5.7 值集合、值计数 Series对象的unique方法可以得到值的集合,集合没有重复元素,相当于去除重复元素。...image.png 5.8 缺失值处理 缺失值数据在大部分数据分析应用中都很常见,pandas的设计目标之一就是让缺失数据的处理任务尽量轻松。 pandas对象上的所有描述统计都排除了缺失数据。...Pandas中的时间序列 不管在哪个领域中(如金融学、经济学、生态学、神经科学、物理学等),时间序列数据都是一种重要的结构化数据形式。在多个时间点观察或者测量到的任何事物都是可以形成一段时间序列。

    4.2K20

    数据科学家私藏pandas高阶用法大全 ⛵

    的一列的计数统计,可以使用groupby和count组合,如果要获取2列或更多列组成的分组的计数,可以使用groupby和size组合。...大家都知道,我们可以使用value_counts获取列里的取值计数,但是,如果要获取列中某个值的百分比,我们可以添加normalize=True至value_counts参数设置来完成: import...combine_first()方法根据 DataFrame 的行索引和列索引,对比两个 DataFrame 中相同位置的数据,优先取非空的数据进行合并。...中的数据,如果 df1 和 df2 中的数据都为空值,则结果保留 df1 中的空值(空值有三种:np.nan、None 和 pd.NaT)。...在以下示例中,创建了一个新的排名列,该列按学生的分数对学生进行排名: import pandas as pd df = pd.DataFrame({'Students': ['John', 'Smith

    6.1K30

    Pandas中的这3个函数,没想到竟成了我数据处理的主力

    对象经过groupby分组后调用apply时,数据处理函数作用于groupby后的每个子dataframe上,即作用对象还是一个DataFrame(行是每个分组对应的行;列字段少了groupby的相应列...应用到DataFrame的每个Series DataFrame是pandas中的核心数据结构,其每一行和每一列都是一个Series数据类型。...这里仍然举两个小例子: ①取所有数值列的数据最大值。当然,这个处理其实可以直接调用max函数,但这里为了演示apply应用,所以不妨照此尝试: ?...上述apply函数完成了对四个数值列求取最大值,其中缺省axis参数为0,对应行方向处理,即对每一列数据求最大值。...假设需要获取DataFrame中各个元素的数据类型,则应用applymap实现如下: ?

    2.5K10
    领券